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Abstract

In this paper we give a characterization of the finite-dimensional subspaces of periodic, real-

valued and continuous functions which admit uniqueness of best L1-approximations. Our

investigations are based on the well-known Property A which characterizes a finite-

dimensional subspace of continuous functions to be a unicity subspace with respect to a

class of weighted L1-norms.
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1. Introduction

Let Cb�a denote the subspace of all continuous, ðb � aÞ-periodic functions
f :R-R where aob; i.e.,

Cb�a ¼ f fACðRÞ : f ðxÞ ¼ f ðx þ ðb � aÞÞ; xARg:
We are interested in a characterization of the finite-dimensional subspaces U of Cb�a

such that every fACb�a has a unique best approximation from U with respect to a

class of weighted L1-norms. The central role in our investigations plays Property A

(Definition 1), introduced by Strauss [7] as a sufficient condition for L1ðmÞ-unicity
subspaces of real-valued continuous functions defined on ½a; b	 where m ¼ l; the
Lebesgue measure. In a series of papers written by Kroó, Pinkus, Schmidt, Sommer,
Wajnryb (a detailed survey of the results has been given by Pinkus in his excellent
monograph [4]), and by Li [2], Property A was applied to give a characterization of

L1ðmÞ-unicity subspaces of real-valued continuous functions defined on certain
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compact subsets of Rd ðdX1Þ for a class of ‘admissible’ measures (Theorem 1).
Recently, Babenko et al. (see e.g. [1] for references) also obtained interesting results

on uniqueness of best L1-approximations.
Since every real halfopen interval ½a; bÞ is homeomorphic to the unit sphere S in

R2; the problem of uniqueness of best L1ðmÞ-approximations of fACb�a from a

subspace U of Cb�a can be considered as an L1ðmÞ-approximation problem in CðSÞ;
the space of all real-valued continuous functions on S: In fact, using some general
necessary conditions for Property A due to Pinkus and Wajnryb [5] we are able to
give a characterization of the finite-dimensional subspaces U of Cb�a such that every

fACb�a has a unique best L1ðmÞ-approximation for a class of weighted measures m
(Theorem 5).

Finally, we present some examples for L1ðmÞ-unicity subspaces in Cb�a; including
spaces of trigonometric polynomials, of piecing together Haar systems and of
periodic polynomial splines. In particular, we obtain a result of Meinardus and

Nürnberger [3] who showed that every function fACb�a has a unique L1-
approximation (with respect to l) from U ¼ PmðKnÞ; the subspace of periodic
polynomial splines of degree mX1 with a set of simple knots Kn:

2. Property A in the nonperiodic case

A central role in best L1ðmÞ-approximation problems plays Property A. To define

it in a general setting, let KCRd ðdX1Þ such that

(1) K is a compact set,
(2) K ¼ int K (the closure of its interior).

U will always denote an n-dimensional subspace of CðKÞ; the space of all real-
valued continuous functions defined on K : We define a set W of measures on K by

W ¼ fm : dm ¼ w dl; wALNðKÞ; ess inf w40 on Kg

(l means the Lebesgue measure on K). For mAW ; the L1ðmÞ-norm is defined by

jj f jjm ¼
Z

K

j f j dm ð fACðKÞÞ:

Let C1ðK ; mÞ denote the linear space CðKÞ endowed with norm jj � jjm: We say that U

is a unicity space for C1ðK ; mÞ; mAW ; if to each fACðKÞ there exists a unique best
approximation from U in the norm jj � jjm:

We need some notations as follows. Let for any gACðKÞ and any subset V of
CðKÞ;

ZðgÞ ¼ fxAK : gðxÞ ¼ 0g;
ZðVÞ ¼ fxAK : vðxÞ ¼ 0 for all vAVg;
supp V ¼ K\ZðVÞ:

Let us now define Property A (cf. [4, p. 98] for its history).
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Definition 1. We say that U satisfies Property A if to each nonzero uAU and
u�ACðKÞ such that ju�j ¼ juj on K there exists a ũAU\f0g for which

(1) ũ ¼ 0 a.e. on ZðuÞ (with respect to l),
(2) ũu�

X0 on K :

Property A is closely related to the problem of existence of unicity spaces for
C1ðK ; mÞ: In fact, it gives a characterization of such subspaces with respect to every
mAW :

Theorem 1 (See Pinkus [4, p. 58]). A finite-dimensional subspace U of CðKÞ is a

unicity space for C1ðK ; mÞ for all mAW if and only if U satisfies Property A:

It should be noted that this result holds for a bigger class of ‘admissible’ measures
which are absolutely continuous with respect to l:

Various consequences of Property A which, in particular, are very helpful for our
periodic problem were obtained. To describe them we need some definitions.

Definition 2. Let DCK ; D (relatively) open. Then ½D	 will denote the number
( possibly infinite but necessarily countable) of open connected components of D:

Definition 3. We say that U decomposes if there exist subspaces V and Ṽ of U with

dim VX1; dim ṼX1 such that

(1) U ¼ V"Ṽ; i.e., U ¼ V þ Ṽ and V-Ṽ ¼ f0g;
(2) supp V-supp Ṽ ¼ |:

To simplify the notations we also define:

Definition 4. For uAU ; set

UðuÞ ¼ fv : vAU ; v ¼ 0 a:e: on ZðuÞg:

The following consequences of Property A due to Pinkus and Wajnryb are very
important to our investigations.

Theorem 2 (See Pinkus [4, Theorems 4.6, 4.12]). Suppose that U satisfies Property A:
Then

(1) ½K\ZðuÞ	pdim UðuÞ for every uAU ; and

(2) U decomposes, if ½K\ZðUÞ	X2:

Remark 1. (1) It is easily seen that if U decomposes by subspaces V and Ṽ; then U

satisfies Property A if and only if both V and Ṽ satisfy Property A [4, p. 70].
(2) In particular, Pinkus showed that if KCR; the first statement of Theorem 2 is

both necessary and sufficient for U to satisfy Property A [4, p. 75].
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(3) For the case when KCR; Pinkus gave an interesting classification of all finite-
dimensional subspaces U of CðKÞ which satisfy Property A. As a result, such a space
has to have a ‘spline-like’ structure [4, p. 75]. A slightly simplified characterization of
such spaces on K ¼ ½a; b	 was obtained by Li [2].

3. L1ðlÞ-approximation by subspaces of periodic functions

Assume now that U and W will denote an n-dimensional subspace of Cb�a and the
set of weighted measures on K ¼ ½a; b	 defined in Section 2, respectively.

We say that U is a periodic unicity space for C1ð½a; b	; mÞ; mAW ; if to each fACb�a

there exists a unique best approximation from U on ½a; b	 in the norm jj � jjm:
Since every function in Cb�a is defined on R and has period b � a;

our approximation problem can be ‘shifted’ to any interval ½a; b	 with
b� a ¼ b � a by extending every measure mAW ; i.e., dm ¼ w dl; to a ‘periodic’
measure *m such that

d *m ¼ w̃ dl

and

w̃ðxÞ ¼
wðxÞ if xA½a; b	;
wðx þ ðb � aÞÞ otherwise:

(

This implies that if fACb�a;

min
uAU

Z b

a

j f � uj dm ¼ min
uAU

Z b

a
j f � uj d *m:

Moreover, to apply some of the statements of the nonperiodic case in Section 2, we
consider our periodic approximation problem as a nonperiodic problem on CðSÞ
where S denotes the unit sphere in R2: In fact, both problems are actually the same,
because every halfopen interval ½a; bÞ is homeomorphic to S; for instance by the
mapping j : ½a; bÞ-S defined by

jðð1� tÞa þ tbÞ ¼ ðcos 2pt; sin 2ptÞ; tA½0; 1Þ:

In particular, j defines a counterclockwise order on S setting jðcÞojðdÞ if
apcodob: Thus, to simplify the following arguments, we identify (if necessary) the
function fACb�a and the subspace U of Cb�a with a function and a subspace of
CðSÞ; again denoted by f and U ; respectively. It should be noted that for mAW the

L1ðmÞ-norm of fACb�a; taken over ½a; b	 and S; respectively, differs only by a
constant factor independently of f :

Although for the compact set K ¼ SCR2 the additional assumption that K ¼
int K does not hold (in the topology of R2), some of the statements in Section 2
remain valid. In fact, the following statements still hold.
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Theorem 3. A finite-dimensional subspace U of Cb�a is a periodic unicity space for

C1ð½a; b	; mÞ for all mAW if and only if U (as a subspace of CðSÞ) satisfies Property A
on S.

Proof. Following the lines of the proof of Theorem 1 it turns out that the arguments
are also true in the case when UCCðSÞ: Thus the statement follows immediately
from Theorem 1. &

Remark 2. (1) To make clearer the difference between the statements that U satisfies
Property A on ½a; b	 (which corresponds to the nonperiodic case) and Property A on
S (U considered as subspace of CðSÞ), respectively, we give the following definition:
We say that the subspace U of Cb�a satisfies Property Aper if to each nonzero uAU

and u�ACb�a such that ju�j ¼ juj on ½a; b	 there exists a ũAU\f0g for which

(1) ũ ¼ 0 a.e. on ZðuÞ;
(2) ũu�

X0 on ½a; b	:

Thus, U satisfies Property A on S if and only if U satisfies Property Aper:

(2) It is easily seen that if U satisfies Property Aper; then UðuÞ satisfies Property

Aper for every uAU :

Theorem 4. Suppose that U satisfies Property Aper: Then

(1) ½S\ZðuÞ	pdim UðuÞ for every uAU ; and

(2) U decomposes, if ½S\ZðUÞ	X2:

Proof. Identify again U with a subspace of CðSÞ: Then UðuÞ corresponds to a
subspace of CðSÞ for every uAU ; and ZðuÞ; ZðUÞ correspond to subsets of S:
Now following the lines of the proof of Theorem 2 it turns out that the same
arguments can be applied to the case when UCCðSÞ: Thus the statement follows
from Theorem 2. &

Remark 3. (1) Of course, Property Aper is weaker than Property A on K ¼ ½a; b	: For

instance, let K ¼ ½0; 1	 and let U ¼ spanfu1; u2gCC1�0 where u1ðxÞ ¼ 1 and u2ðxÞ ¼
ðx � 1

4
Þðx � 3

4
Þ; xA½0; 1	: Then it follows that ½K\Zðu2Þ	 ¼ 3 which, in view of

Theorem 2, implies that U does not satisfy Property A on ½0; 1	:
But, considering u2 as a function on S; it obviously follows that ½S\Zðu2Þ	 ¼ 2 ¼

dim Uðu2Þ ¼ dim U : In fact, we can show that U satisfies Property Aper: Suppose

that u ¼ c1u1 þ c2u2AU\f0g: Let u�AC1�0 with ju�j ¼ juj: Assume first that u has no
sign change on ð0; 1Þ: Then u� has no sign chance on (0,1) and euu�

X0 on ½0; 1	 for
some eAf�1; 1g: Assume now that u has a sign change x̃Að0; 1Þ: Then by definition
of u1 and u2; ZðuÞ ¼ fx̃; 1� x̃g: This implies that either eu�

X0 or eu� ¼ u on ½0; 1	 for
some eAf�1; 1g (recall that u�ð0Þ ¼ u�ð1Þ). Then in the first case, eu1u�

X0 while in
the second case, euu�

X0 on ½0; 1	:
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Thus it follows from Theorems 3 and 1, respectively, that for every fAC1�0 and

each mAW there exists a unique best L1ðmÞ-approximation from U ; and there must

exist f̃AC½0; 1	 and *mAW such that f̃ fails to have a unique best L1ð *mÞ-approximation
from U :

(2) To obtain the same number of connected components of S\ZðuÞ and
½a; b	\ZðuÞ; respectively, we use the periodic properties: Let uAUCCb�a and assume

first that ZðuÞ ¼ |: Then obviously, ½S\ZðuÞ	 ¼ ½K\ZðuÞ	 ¼ 1 where K ¼ ½a; b	:
Assume now that ZðuÞa|: Let x̃AZðuÞ and consider u on K̃ ¼ ½x̃; x̃ þ b � a	: Since
uACb�a; we have uðx̃ þ b � aÞ ¼ 0: This implies that

½S\ZðuÞ	 ¼ ½K̃\ZðuÞ	:

Thus, statement (1) of Theorem 4 is also satisfied replacing S by an interval K̃ which
depends on u:

4. Characterization of Property Aper

In the nonperiodic case the inequality

½K\ZðuÞ	pdim UðuÞ ð4:1Þ

for every uAU is both necessary and sufficient for U to satisfy Property A if KCR

(see Remark 1). The sufficiency is not true for periodic approximation in general as
the following example will show.

Example 1. Let K ¼ ½0; 1	 and assume that U ¼ spanfu1; u2gCC1�0 where u1ðxÞ ¼
ðx � 1

4
Þðx � 3

4
Þ and u2ðxÞ ¼ xðx � 1

2
Þðx � 1Þ; xA½0; 1	: Let u ¼ c1u1 þ c2u2AU : We first

show that ½S\ZðuÞ	p2: This is obviously true if c1 ¼ 0 or c2 ¼ 0: Therefore, assume
that cia0; i ¼ 1; 2: Without loss of generality, let c1 ¼ 1 and c2o0: This implies that
uð1Þ ¼ u1ð1Þ40: Since u coincides on ½0; 1	 with the polynomial

pðxÞ ¼ ðx � 1
4
Þðx � 3

4
Þ þ c2xðx � 1

2
Þðx � 1Þ; xAR

and limx-N pðxÞ ¼ �N; it follows that p has a zero in ð1;NÞ: Thus, u can have at
most two zeros in ½0; 1	 (in fact, it has two) and, therefore,

½S\ZðuÞ	p2:

We now show that U fails to satisfy Property Aper: On the contrary assume that U

has this property. Then, since u� ¼ ju2jAC1�0; there must exist a ũAU with u�ũX0;
i.e., ũX0 on ½0; 1	: Let ũ ¼ c1u1 þ c2u2: Then c1a0; because u2 changes the sign on

ð0; 1Þ; and it follows that sign ũð0Þ ¼ sign c1 and sign ũð1
2
Þ ¼ �sign c1; a contra-

diction.
This shows that statement (4.1) fails to be a sufficient condition for Property Aper

in general.
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We now characterize all U in Cb�a which satisfy Property Aper: On the basis of

Theorem 4 we only have to treat the cases ZðUÞ ¼ |; ZðUÞ ¼ fa; bg and ZðUÞ ¼
fx̃g for some x̃Aða; bÞ; respectively. Since we identify U with a subspace of CðSÞ;
and, therefore, the points a and b correspond to a single point on S; the cases
ZðUÞ ¼ fa; bg and ZðUÞ ¼ fx̃g for some x̃Aða; bÞ can be actually treated in the
same way.

Case 1: Assume that ZðUÞ ¼ fx̃g for some x̃Aða; bÞ: Since uðx̃Þ ¼ 0 for every uAU ;
we consider U as a subspace of periodic functions on K ¼ ½x̃; x̃ þ b � a	: Assume
that U satisfies Property Aper: It is then easily seen that U even satisfies Property A

on K ; i.e., the more general nonperiodic case is given. Indeed, let uAU\f0g and
u�ACðKÞ such that ju�j ¼ juj on K : Since uðx̃Þ ¼ uðx̃ þ b � aÞ ¼ 0; it follows that
u�ðx̃Þ ¼ u�ðx̃ þ b � aÞ ¼ 0: Hence, u� can be continuously extended to a periodic
function on R with period b � a; i.e., u�ACb�a: Then, since U satisfies Property Aper;

there exists a ũAU\f0g for which ũ ¼ 0 a.e. on ZðuÞ and ũu�
X0 on K :

Thus we have shown that U (as a subspace of CðKÞ) satisfies Property A
on K :

But for this case, Pinkus [4, Theorem 4.16] and Li [2] totally classified all UCCðKÞ
which satisfy Property A. In particular, they showed that such a subspace U has to
have a spline-like structure.

Thus, there still remain the case where ZðUÞ ¼ |:
Case 2: Assume that ZðUÞ ¼ |: This is the actually interesting case of our periodic

approximation problem. We are able to characterize all subspaces U of Cb�a which
satisfy Property Aper:

Before stating the main result, we give the following definition.

Definition 5. We say that ½c; d	CR is a zero interval of uACb�a if u ¼ 0 on ½c; d	; and
u does not vanish identically on ðc � e; cÞ and on ðd; d þ eÞ for any e40:

Moreover, we say that zeros fxigk
i¼1CR of uACb�a such that x1o?oxk are

separated zeros of u if there exist fyigk�1
i¼1 satisfying yiAðxi; xiþ1Þ; i ¼ 1;y; k � 1; for

which uðyiÞa0:

Theorem 5. Assume that U is an n-dimensional subspace of Cb�a satisfying ZðUÞ ¼ |:
The following statements ð1Þ and ð2Þ are equivalent.

(1) U satisfies Property Aper:

(2) (a) ½S\ZðuÞ	pdim UðuÞ ¼ dðuÞ for every uAU :
(b) For every nonzero uAU and every set fxigmþ1

i¼1 of separated zeros of u

satisfying

apx1o?oxmpbpxmþ1 ¼ x1 þ b � a

and xm � x1ob � a where 1pmpdðuÞ there exists a ũAUðuÞ\f0g such that

ð�1Þi
ũðxÞX0; xA½xi; xiþ1	; i ¼ 1;y;m:
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Remark 4. (1) Before proving the theorem, we want to point out that statement
(2)(b) is closely related to an important subclass of subspaces, the weak Chebyshev
spaces. An m-dimensional subspace V of C½a; b	 is said to be a weak Chebyshev

(WT-) subspace if every vAV has at most m � 1 sign changes on ½a; b	; i.e., there do
not exist points apx1o?oxmþ1pb such that

vðxiÞvðxiþ1Þo0; i ¼ 1;y;m:

The relationship of statement (2)(b) to WT-spaces is based on the following result
(for details on WT-spaces cf. [4, p. 204]):

If V is an m-dimensional WT-subspace of C½a; b	 and a set of points is given by

y0 ¼ aoy1o?oykob ¼ ykþ1; kpm � 1;

then there exists a ṽAV \f0g satisfying

ð�1Þi
ṽðxÞX0; xA½yi�1; yi	; i ¼ 1;y; k þ 1:

(2) Another relationship to properties of WT-spaces is given by the following fact:
If UCCb�a satisfies Property Aper; and for uAU ; ½c; d	 is a zero interval of u with

apcodpb; then UðuÞ satisfies Property Aper (Remark 2). Moreover, it follows that

UðuÞ is a WT-subspace on Ic ¼ ½c; c þ b � a	: Indeed, suppose there exists a
ũAUðuÞ\f0g with at least dðuÞ sign changes on Ic: This implies that ½Ic\ZðũÞ	XdðuÞ þ
1; while in view of Theorem 4,

½Ic\ZðũÞ	pdim UðũÞpdðuÞ;

a contradiction (recall that ũðcÞ ¼ ũðc þ b � aÞ ¼ 0).
In addition, it follows that Case 1 is given, because cAZðUðuÞÞ: Hence applying

the classification results of the nonperiodic case, a characterization of UðuÞ by a
spline-like structure is obtained (see Case 1 above).

Proof of Theorem 5. ð1Þ ) ð2Þ(a). This is a consequence of Theorem 4.

ð1Þ ) ð2Þ(b). Let uAU\f0g and let for some mAf1;y; dðuÞg a set fxigmþ1
i¼1 of

separated zeros of u be given satisfying

apx1ox2o?oxmpbpxmþ1 ¼ x1 þ b � a

and xm � x1ob � a: In particular, xmþ14xm; because xmþ1 � x1 ¼ b � a: Set ti ¼ xi;
i ¼ 1;y;m and complete this set by points tmotmþ1o?otdðuÞoxmþ1 to a set of

dðuÞ points. Let fv1;y; vdðuÞg form a basis of UðuÞ: We distinguish.

Assume first that detðviðtjÞÞdðuÞ
i; j¼1a0: Then modðuÞ; because uAUðuÞ and

uðtiÞ ¼ 0; i ¼ 1;y;m: Hence there exists a ûAUðuÞ satisfying ûðtiÞ ¼ 0; i ¼
1;y; dðuÞ � 1; and ûðtdðuÞÞ ¼ 1: In particular, ûðxmþ1Þ ¼ 0: Then there exists a

u�ACb�a such that

u�ðxÞ ¼ ð�1ÞijûðxÞj if xA½ti; tiþ1	; i ¼ 1;y;m � 1;

ð�1ÞmjûðxÞj if xA½tm; xmþ1	:

(
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Hence it follows that ju�j ¼ jûj: Since U satisfies Property Aper; there exists a

ũAUðûÞ\f0gCUðuÞ\f0g satisfying

ũu�X0 on S:

This implies that

ð�1Þi
ũðxÞX0; xA½xi; xiþ1	; i ¼ 1;y;m:

If detðviðtjÞÞdðuÞ
i; j¼1 ¼ 0; there exists a non-zero ûAUðuÞ satisfying ûðtiÞ ¼ 0; i ¼

1;y; dðuÞ: Then concluding analogously as above we obtain the desired statement.

ð2Þ ) ð1Þ: Let u�AU\f0g and assume that S\Zðu�Þ ¼
Sl

i¼1 Ai; the union of the

connected components. To show Property Aper we must prove that for any choice of

eiAf�1; 1g; i ¼ 1;y; l there exists a ũAUðu�Þ\f0g such that ei ũX0 on Ai; i ¼ 1;y; l:
Let any set fe1;y; elg of signs be given. It first follows from (2)(a) that

lpdim Uðu�Þ ¼ dðu�Þ: If Zðu�Þ ¼ |; then l ¼ 1 and setting ũ ¼ e1ju�jAUðu�Þ\f0g;
the statement follows. Therefore, assume that Zðu�Þa|: Then, there must exist a set

fxigmþ1
i¼1 of separated zeros of u� satisfying

apx1ox2o?oxmpbpxmþ1 ¼ x1 þ b � a

and

[i1
i¼1

AiCðx1; x2Þ if e1 ¼ ? ¼ ei1 ;

[i2
i¼i1þ1

AiCðx2; x3Þ if ei1þ1 ¼ �ei1 ; ei1þ1 ¼ ? ¼ ei2 ;

^

[im
i¼im�1þ1

AiCðxm; xmþ1Þ if eim�1þ1 ¼ �eim�1
; eim�1þ1 ¼ ? ¼ eim ¼ el :

Of course, 1pmplpdðu�Þ and xmoxmþ1 which implies that xm � x1ob � a: Then
by hypothesis, we obtain a ũAUðu�Þ\f0g satisfying

ð�1Þi
ũðxÞX0; xA½xi; xiþ1	; i ¼ 1;y;m:

Assume, without loss of generality, that e1 ¼ �1: Then by the choice of fxigmþ1
i¼1 ; we

have

ei ũX0 on Ai i ¼ 1;y; l:

This completes the proof of Theorem 5. &

Before presenting examples of some nontrivial classes of subspaces which satisfy
Property Aper we want to point out some differences between the characterizations of

Property A in the nonperiodic case due to Pinkus and Li and our characterization of
Property Aper: For instance, Li [2] gave the following characterization.
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Theorem 6. Let U denote a finite-dimensional subspace of C½a; b	 and assume that

ZðUÞ-ða; bÞ ¼ |: Then U satisfies Property A if and only if U satisfies the following

conditions:

(1) U is a weak Chebyshev space;
(2) Uð½c; d	Þ ¼ Uð½a; d	Þ"Uð½c; b	Þ for all aocodob; where for any apapbpb;

Uð½a; b	Þ ¼ fuAU : u ¼ 0 on ½a; b	g:

Remark 5. (1) The second condition implies that every function uAUð½c; d	Þ
‘generates’ a function v in U such that v ¼ 0 on ½a; d	 and v ¼ u on ½d; b	 (and,
analogously, a function ṽ in U such that ṽ ¼ 0 on ½c; b	 and ṽ ¼ u on ½a; c	). This
property is not true in the periodic case in general: For instance, let K ¼ ½0; 3	 and
assume that U ¼ spanfu1; u2gCC3�0 where u1ðxÞ ¼ 1 and

u2ðxÞ ¼
1� x if 0pxp1;

0 if 1oxo2;

x � 2 if 2pxp3:

8><
>:

Then U satisfies Property Aper; because U is a space of piecewise polynomials on K

with the knots xi ¼ i; i ¼ 0; 1; 2; 3 (see Example 3). But, U fails to satisfy statement
(2) of Theorem 6, since Uð½1; 2	Þ ¼ spanfu2g and Uð½0; 2	Þ ¼ f0g; Uð½1; 3	Þ ¼ f0g:

(2) The above example fails to be a weak Chebyshev space, because u2 � 1
2

u1 has

two sign changes in ð0; 3Þ: Hence statement (1) of Theorem 6 is also not true in the
periodic case in general.

Example 2 (Trigonometric polynomials). Let K ¼ ½0; 2p	 and assume that U

denotes the ð2n þ 1Þ-dimensional subspace of all trigonometric polynomials u of
order n; i.e.,

uðxÞ ¼ a0 þ
Xn

j¼1

ðaj cos jx þ bj sin jxÞ; xA½0; 2p	:

It is well-known that U is a Haar system on ½0; 2pÞ; i.e., every nonzero uAU has at
most 2n zeros in ½0; 2pÞ: Hence UðuÞ ¼ U for every nonzero uAU and
½K\ZðuÞ	p2n þ 1 ¼ dim U which implies, in view of Remark 1, that U satisfies
Property A on K : Then in particular, U satisfies Property Aper:

Example 3 (Piecing together Haar systems). Let a ¼ e0oe1o?oekþ1 ¼ b: On
each interval Ii ¼ ½ei�1; ei	; let Ui be a Haar system of real-valued continuous
functions with dimension niX1; i ¼ 1;y; k þ 1: For convenience, we especially
assume that n1X2 and nkþ1X2: V will denote the subspace of C½a; b	 defined by

V ¼ fvAC½a; b	 : vjIi
AUi; i ¼ 1;y; k þ 1g:

It is well-known (cf. [4, p. 80]) that dim V ¼
Pkþ1

i¼1 ni � k and V is a WT-system on

½a; b	: Moreover, V satisfies Property A on ½a; b	:
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To investigate its periodic analogue we consider the subspace U of Cb�a defined by

U ¼ fuACb�a : ujIi
AUi; i ¼ 1;y; k þ 1g: ð4:2Þ

Thus, U is the space of all periodic extensions of functions vAV such that vðaÞ ¼
vðbÞ:

Theorem 7. Let U be the space of periodic functions defined in ð4:2Þ: Then U satisfies

Property Aper:

To apply Theorem 5 we divide the proof of Theorem 7 into several parts.

Claim 3.1. Let U and V be given as above. Then

dim U ¼ dim V � 1: ð4:3Þ

Proof. Since n1X2 and nkþ1X2; by the Haar condition of U1 and Ukþ1; respectively,
there exists a vAV such that vðaÞ ¼ 1; vðe1Þ ¼ 0; v ¼ 0 on ðe1; ekÞ; and vðekÞ ¼ 0;
vðbÞ ¼ �1: Hence v cannot periodically extended to a function in U which implies
that

dim Uodim V :

To show the statement we set dim V ¼ n þ 1 ðnX0Þ and suppose that fv1;y; vnþ1g
forms a basis of V such that

v140 on ½a; b	; viðaÞ ¼ 0; i ¼ 2;y; n þ 1:

(Recall that each Ui is a Haar system on Ii which implies that there exists a positive
function in Ui:)

We show that viðbÞa0 for some iAf2;y; n þ 1g: On the contrary, assume that
viðbÞ ¼ 0; i ¼ 2;y; n þ 1: Let uAV such that uðaÞ ¼ 1; uðe1Þ ¼ 0; u ¼ 0 on ðe1; ek),
and uðekÞ ¼ 0; uðbÞ ¼ 1 (u can be found analogously as the function v above using
the Haar condition of U1 and Ukþ1; respectively). Hence it follows that
fu; v2;y; vnþ1g are linearly independent and can be periodically extended to
functions in U : This implies dim UXn þ 1 ¼ dim V ; a contradiction. Thus it follows
that vlðbÞa0 for some lAf2;y; n þ 1g: Consider the n linearly independent
functions in V ;

ṽ1 ¼ v1 þ
v1ðaÞ � v1ðbÞ

vlðbÞ
vl ; ṽi ¼ vi �

viðbÞ
vlðbÞ

vl ; i ¼ 2;y; n þ 1; ial:

Then we obtain that

0aṽ1ðaÞ ¼ v1ðaÞ ¼ ṽ1ðbÞ; ṽiðaÞ ¼ ṽiðbÞ ¼ 0; i ¼ 2;y; n þ 1; ial

which implies that fṽ1;y; ṽl�1; ṽlþ1;y; ṽnþ1g can be periodically extended to
functions in U : Thus,

npdim Uodim V ¼ n þ 1;

and it follows that dim U ¼ n ¼ dim V � 1: &
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Claim 3.2. ZðUÞ ¼ |:

Proof. Since each Ui is a Haar system on Ii; there exists a positive function in Ui;
i ¼ 1;y; k þ 1: Then piecing together such functions we obtain a continuous and
positive function ṽ on ½a; ek	 such that ṽjIi

AUi; i ¼ 1;y; k: Since Ukþ1 is a Haar

system on Ikþ1 and nkþ1X2; by interpolation we construct a function v̂AUkþ1 such
that v̂ðekÞ ¼ ṽðekÞ and v̂ðbÞ ¼ ṽðaÞ: Piecing together v̂ and ṽ we then obtain a function

ũAU such that ũ40 on ½a; ek	: This implies that ½a; ek	-ZðUÞ ¼ |: Analogously, we

find a function ûAU such that û40 on ½e1; b	 which implies that ½e1; b	-ZðUÞ ¼ |:
Thus the statement is proved. &

Claim 3.3. Let uAU and assume that ũAV such that ũ ¼ uj½a;b	: Then we obtain

dðuÞ ¼ dim UðuÞ ¼
dim VðũÞ if I1,Ikþ1CZðuÞ;
dim VðũÞ � 1 otherwise:

(
ð4:4Þ

Proof. It is obvious that dðuÞ ¼ dim UðuÞpdim VðũÞ: Assume first that
I1,Ikþ1CZðuÞ: Then, if vAVðũÞ; it follows that v ¼ 0 on I1,Ikþ1: Hence v has a
periodic extension in UðuÞ which implies that dim VðũÞpdðuÞ:

Assume now, without loss of generality, that u does not vanish identically on Ikþ1:
Using the Haar condition of Ukþ1 we find a vAV such that

v ¼ 0 on ½a; ek	; vðbÞ ¼ 1:

Since Ikþ1 fails to be a subset of ZðũÞ; it follows that vAVðũÞ: But, since v has no
periodic extension in U ; we obtain that

dðuÞodim VðũÞ:

Arguing similarly as in the proof of (4.3), we can then show that

dðuÞ ¼ dim VðũÞ � 1: &

Claim 3.4. Let uAU : Then

½S\ZðuÞ	pdðuÞ: ð4:5Þ

Proof. Set ũ ¼ uj½a;b	: Then ũAV : Since V satisfies Property A, following Theorem 2

and Remark 1 we obtain that

½½a; b	\ZðũÞ	pdim VðũÞ:

This implies that if uðaÞ ¼ uðbÞa0;

½S\ZðuÞ	pdim VðũÞ � 1;

because the first and the last component of ½a; b	\ZðũÞ reduce to one connected
component of S\ZðuÞ: Hence in view of (4.4), the statement follows. Moreover, the
statement also follows, if dim VðũÞ ¼ dðuÞ:
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Thus we have still to consider the case when uðaÞ ¼ uðbÞ ¼ 0 and dðuÞ ¼
dim VðũÞ � 1: In view of (4.4), let us assume that Ikþ1 fails to be a subset of ZðũÞ:
Moreover, suppose that

½½a; b	\ZðũÞ	 ¼ dim VðũÞ ¼ dðuÞ þ 1:

Since ũ does not vanish identically on Ikþ1 and ũðbÞ ¼ 0; it has exactly 0prpnkþ1 �
2 zeros ekpz1o?ozrob there (recall that Ukþ1 is a Haar system on Ikþ1). Assume
that ũ40 on ðb � e; bÞ for some e40: Interpolating by Ukþ1 on Ikþ1 we obtain a
function ṽAV such that

ṽ ¼ 0 on ½a; ek	; ṽðziÞ ¼ 0; i ¼ 1;y; r; ṽðbÞ ¼ 1:

Then for some sufficiently small c40; the function ũ � cṽAV has a sign change on
ðb � e; bÞ which implies that

½½a; b	\Zðũ � cṽÞ	Xdim VðũÞ þ 1:

Moreover, since ṽ ¼ 0 on ½a; ek	 and ũ � cṽ does not vanish identically on Ikþ1; we
obviously obtain that

Vðũ � cṽÞ ¼ VðũÞ:

Thus it follows that

½½a; b	\Zðũ � cṽÞ	Xdim Vðũ � cṽÞ þ 1;

in contradiction to Property A of V :
Thus, we have shown that in the case when uðaÞ ¼ uðbÞ ¼ 0 and dðuÞ ¼

dim VðũÞ � 1;

½S\ZðuÞ	 ¼ ½½a; b	\ZðũÞ	pdim VðũÞ � 1 ¼ dðuÞ: &

Claim 3.5. U is a WT-system on ½a; b	; if n ð¼ dim UÞ is odd.

Proof. Assume that there exists a ûAU such that û has at least n sign changes in
ða; bÞ: If ûðaÞ ¼ ûðbÞ ¼ 0; then

½½a; b	\ZðûÞ	 ¼ ½S\ZðûÞ	Xn þ 1XdðûÞ þ 1;

which contradicts (4.5). Hence, ûðaÞ ¼ ûðbÞa0: But then, in view of the fact that n is
odd, û must have at least n þ 1 sign changes in ða; bÞ which contradicts the property
of V to be a WT-system on ½a; b	: &

Claim 3.6. Set

Ũ ¼ fuAU : uðaÞ ¼ 0g:

Then dim Ũ ¼ n � 1 and Ũ is a WT-system on ½a; b	:

Proof. Since there exists a uAU such that

uðaÞ ¼ 1; u ¼ 0 on ½e1; ek	; uðbÞ ¼ 1;
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it is easily seen that dim Ũ ¼ n � 1: Assume now that there exists a ũAŨ with at least
n � 1 sign changes in ða; bÞ: Of course, ũðaÞ ¼ ũðbÞ ¼ 0: Then it follows from (4.5)

that ½a; b	\ZðũÞ ¼
Sl

i¼1 Ai (the union of the connected components) with l ¼ n;

which implies that ũ has exactly n � 1 sign changes. Consider first the case when n is
even. Then ũ has different sign on A1 and on Al ; respectively. Let ṽAV such that
ṽðaÞṽðbÞo0 (this function can be found analogously as the function v defined in the
proof of (4.3)). Then for some sufficiently small e the function ũ þ eṽAV has at least
n þ 1 sign changes in ða; bÞ which contradicts the property of V to be a WT-system
on ½a; b	:

The case when n is odd can be treated analogously using a function ṽAV such that
ṽðaÞṽðbÞ40:

Thus it follows that Ũ is a WT-system on ½a; b	: &

Claim 3.7. Let uAU\f0g and let a set fxigmþ1
i¼1 of separated zeros of u be given

satisfying

apx1ox2o?oxmpbpxmþ1 ¼ x1 þ b � a ð4:6Þ

and xm � x1ob � a where 1pmpdðuÞ: Then there exists a ũAUðuÞ\f0g such that

ð�1Þi
ũðxÞX0; xA½xi; xiþ1	; i ¼ 1;y;m:

Proof. We prove the statement by considering several cases.
Case 3.6.1: Assume that UðuÞ ¼ U : Let a set of separated zeros of u be given by

(4.6). Suppose first that m ¼ n: Since each vAV has at most ni � 1 separated zeros in

Ii; i ¼ 1;y; k þ 1; and n þ 1 ¼ dim V ¼
Pkþ1

i¼1 ni � k; it follows that each vAV has

at most n separated zeros in ½a; b	: Hence the assumption m ¼ n implies that

ZðuÞ-½x1; xmþ1	 ¼ fxigmþ1
i¼1 and u has exactly ni � 1 of its zeros in each Ii; i ¼

1;y; k þ 1: Moreover, e1eZðuÞ; because otherwise e1 is a common zero of ujI1 and

ujI2 which implies that u would have at most ðn1 � 1Þ þ ðn2 � 1Þ � 1 zeros in I1,I2:

Then u could have at most
Pkþ1

i¼1 ni � ðk þ 1Þ � 1 ¼ n � 1 zeros in ½a; b	 contra-

dicting m ¼ n: Analogously we obtain that ZðuÞ-feigk
i¼1 ¼ |: Then, since each Ui is

a Haar system on Ii; all the zeros of u in ða; bÞ must be sign changes.

We distinguish: If xmob; then u changes the sign at fxigm
i¼2 and setting ũ ¼ eu for

some eAf�1; 1g the statement follows.
If xm ¼ b; then x14a; because xm � x1ob � a: Moreover, uðaÞ ¼ 0; since uðxmÞ ¼

0 and uACb�a: Then u would have m þ 1 ¼ n þ 1 separated zeros fa; x1;y; xmg in
½a; b	 contradicting the above arguments on V :

Suppose now that mpn � 1 and n is even. Set

y0 ¼ a; yi ¼ xi; i ¼ 1;y;m; ymþ1 ¼ b if m is even

(then, in fact, mpn � 2; because n is even), and

y0 ¼ a; yi ¼ xiþ1; i ¼ 1;y;m � 1; ym ¼ b if m is odd:
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In both cases, using the statements on WT-systems given in Remark 4 we find a

ũAŨ\f0g (recall that we have shown in Claim 3.6 that Ũ is a WT-system on ½a; b	)
such that

ð�1Þi
ũðxÞX0; xA½yi; yiþ1	; i ¼ 0;y;m if m is even;

ð�1Þiþ1
ũðxÞX0; xA½yi; yiþ1	; i ¼ 0;y;m � 1 if m is odd:

(If x1 ¼ a or xm ¼ b; the inequalities are also true for the degenerate intervals ½y0; y1	;
½ym�1; ym	 or ½ym; ymþ1	; respectively, because %uðaÞ ¼ %uðbÞ ¼ 0 for every %uAŨ:)

Thus in both cases it follows that

ð�1Þm
ũðxÞX0; xA½a; x1	,½xm; b	;

which corresponds to the sign behavior of ũ on ½xm; xmþ1	: Hence ũ has the desired
properties.

Suppose now that n is odd and mpn � 1: Then by Claim 3.5, U itself is a WT-

system on ½a; b	: Replacing the subspace Ũ by U ; if necessary, and arguing
analogously as above we obtain a function ũAU\f0g with the desired properties.

Case 3.6.2: Assume that u has at least two zero intervals J1 ¼ ½ej; el 	 and J2 ¼ ½ep; eq	
in ½a; b	 such that eloep; and at most finitely many zeros in ½el ; ep	: Let

fxigm
i¼1-ðel ; epÞ ¼ fyigr

i¼1 such that y0 ¼ eloy1o?oyroep ¼ yrþ1: Define ûAV

satisfying û ¼ 0 on ½a; el 	,½ep; b	 and û ¼ u on ðel ; epÞ: Since V satisfies Property A,

the subspace VðûÞ satisfies Property A. To use this property we distinguish several
cases:

Consider first the cases when x1eðel ; epÞ and x1Aðel ; epÞ; m even, respectively

(hence x1 ¼ y1 in the second case). In both cases, by the Property A there exists a
ũAVðûÞ\f0g such that

ð�1Þi
ũðxÞX0; xA½yi; yiþ1	; i ¼ 0;y; r:

Finally assume that x1Aðel ; epÞ and m is odd. Define ỹ0 ¼ el and ỹi ¼ yiþ1; i ¼
1;y; r: By the Property A there exists a ũAVðûÞ\f0g such that

ð�1Þiþ1
ũðxÞX0; xA½ỹi; ỹiþ1	; i ¼ 0;y; r � 1:

Moreover, in all cases ũðaÞ ¼ ũðbÞ ¼ 0 which implies that ũ has a periodic extension
in Cb�a (again denoted by ũ). Therefore, ũAUðuÞ and eũ has the desired properties
for some eAf�1; 1g:

Case 3.6.3: Assume that u has a unique zero interval J ¼ ½ep; eq	 in ½a; b	: To derive

this case from Case 3.6.2 we generate a subspace Ṽ of piecing together Haar systems
for a bigger knot sequence as follows:

Let

ekþ1þi ¼ ei þ b � a; Ikþ1þi ¼ ½ekþi; ekþ1þi	

and

Ukþ1þi ¼ fuACðIkþ1þiÞ : uðxÞ ¼ ũðx � ðb � aÞÞ; xAIkþ1þi; for some ũAUig;
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i ¼ 1;y; k þ 1: We consider the linear space Ṽ defined by

Ṽ ¼ fvAC½e0; e2kþ2	 : vjIi
AUi; i ¼ 1;y; 2k þ 2g:

Of course, Ṽ has the same properties as V : In particular, it satisfies Property A.
Moreover, the given subspace U of Cb�a can also be defined by

U ¼ fuACb�a : ujIi
AUi; i ¼ l;y; l þ kg

for any lAf1;y; k þ 2g: We now consider the given function u on ½ep; eqþkþ1	: Then

by hypothesis, u ¼ 0 on ½ep; eq	,½epþkþ1; eqþkþ1	 and u has at most finitely many

zeros in ½eq; epþkþ1	: As in Case 3.6.2 we define ûAṼ satisfying û ¼ 0 on

½e0; eq	,½epþkþ1; e2kþ2	 and û ¼ u on ðeq; epþkþ1Þ: Since ũjIi
AUi; i ¼ p þ 1;y; p þ

k þ 1; and ũðepÞ ¼ ũðepþkþ1Þ ¼ 0 for every ũAṼðûÞ; every function ũj½ep;epþkþ1	 has a

periodic extension in U : Moreover, since ṼðûÞ satisfies Property A, similarly arguing

as in Case 3.6.2 we find a ũAṼðûÞ such that ũ has the desired sign behaviour on

½ep; epþkþ1	 (where the separated zeros fxigmþ1
i¼1 are identified with a subset of the

sphere and, therefore, they correspond to a set of separated zeros in ½ep; epþkþ1	).
Thus the extension of ũ in U (again denoted by ũ) is a function with the desired
properties on ½ep; epþkþ1	 and, therefore, on ½a; b	:

This completes the proof of Claim 3.7. &

Proof of Theorem 7. From Claim 3.2 it follows that ZðUÞ ¼ |: Moreover, in view of
Claim 3.4, statement (2)(a) of Theorem 5 is satisfied. Finally, statement (2)(b) of
Theorem 5 follows from Claim 3.7.

Hence by Theorem 5, U satisfies Property Aper: &

Example 4 (Periodic splines). Given kX0 and lX1; let a ¼ e0oe1o?oekþ1 ¼ b:
Extend this knot vector to a knot sequence on R by

eiþjðkþ1Þ ¼ ei þ jðb � aÞ; i ¼ 0;y; k þ 1; jAZ\f0g:

Set D ¼ feigiAZ and Ii ¼ ½ei�1; ei	; iAZ: By Pl we denote the linear space of all

polynomials of degree at most l: For any qAf1;y; lg we consider the linear space

S
l�q
l ðDÞ defined by

S
l�q
l ðDÞ ¼ fsACl�qðRÞ : sjIi

APl ; iAZg;

the subspace of polynomial spline functions of degree l with the fixed knots feigiAZ of

multiplicity q: It is well-known (cf. [6, Theorem 4.5]) that dim S
l�q
l ðDÞj½a;b	 ¼

l þ 1þ qk and a natural basis on ½a; b	 is given by

1; x;y; xl ; ðx � e1Þl
þ;y; ðx � e1Þl�qþ1

þ ;y; ðx � ekÞl
þ;y; ðx � ekÞl�qþ1

þ ;

where

ðx � eiÞr
þ :¼

ðx � eiÞr if xXei;

0 if xoei:

(
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Moreover, it is well-known that S
l�q
l ðDÞ is a WT-system on ½a; b	 [6, Theorem 4.55]

and satisfies Property A there [4, p. 81].

For that what follows we need a local basis of S
l�q
l ðDÞ; the basis of B-splines. To

define it we split up each knot ei according to its multiplicity q by setting

ei ¼ yiq ¼ yiqþ1 ¼ ? ¼ yðiþ1Þq�1; iAZ:

Then it is well-known [6, Theorem 4.9] that a basis of S
l�q
l ðDÞ is given by fBmgmAZ

where Bm is the unique B-spline satisfying

Bm ¼ 0 on R\ðym; ymþlþ1Þ;

BmðxÞ40 for xAðym; ymþlþ1Þ;X
mAZ

BmðxÞ ¼ 1 for xAR:

Moreover, it is well-known [6, Theorem 4.64] that every subsystem
fBm1

;Bm1þ1;y;Bm2
g where m1; m2AZ; m1om2; spans a WT-space.

We are now interested in the subspace

P
l�q
l ðDÞ ¼ S

l�q
l ðDÞ-Cb�a; ð4:7Þ

the subspace of periodic splines of degree l with the fixed knots feigiAZ of multiplicity

q: It is easily verified that

dim P
l�q
l ðDÞ ¼ l þ 1þ qk � ðl � q þ 1Þ ¼ qðk þ 1Þ:

Theorem 8. Let U ¼ P
l�q
l ðDÞ; the space of periodic splines defined in ð4:7Þ: Then U

satisfies Property Aper:

To prove this statement we distinguish two cases.

Case 4.1: Let q ¼ l: Then S0
l ðDÞj½a;b	 is obviously a space of piecing together the

Haar systems Ui ¼ Pl ; i ¼ 1;y; k þ 1: This implies that S0
l ðDÞj½a;b	 corresponds to a

space V as considered in Example 3. Hence by the arguments in the proof of

Example 3, the space U ¼ P0
l ðDÞ satisfies Property Aper:

Case 4.2: Assume that qAf1;y; l � 1g: To show that U ¼ P
l�q
l ðDÞ satisfies

Property Aper we divide the proof into several parts.

Claim 4.1. Let uAU : Then

½S\ZðuÞ	pdim UðuÞ: ð4:8Þ

Proof. Assume first that UðuÞ ¼ U and S\ZðuÞ ¼
Sr

i¼1 Ai; the union of the

connected components, where rXdim U þ 1 ¼ qðk þ 1Þ þ 1: It is easily seen that
for each iAf1;y; rg there exists a ziAAi such that u0ðziÞ ¼ 0 (the derivative of u) and

fzigrþ1
i¼1 is a set of separated zeros of u0 (as a subset of R) satisfying, without loss of
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generality,

apz1o?ozrpbpzrþ1 ¼ z1 þ b � a

and zr � z1ob � a: Hence

½S\Zðu0Þ	Xr:

By a repeated application of this argument we finally obtain that

½S\Zðuðl�qÞÞ	Xr:

Moreover, uðl�qÞ is a continuous and periodic spline function of degree q which
implies that

uðl�qÞAP0
qðDÞ:

Since dim P0
qðDÞ ¼ qðk þ 1Þ; we then have got that

½S\Zðuðl�qÞÞ	XrXqðk þ 1Þ þ 1 ¼ dim P0
qðDÞ þ 1:

But this contradicts (4.5), because P0
qðDÞ is a space of piecing together the Haar

systems Ui ¼ Pq; iAZ; as considered in Example 3.

Assume now that u has a unique zero interval J ¼ ½em; en	 in ½a; b	: To determine

the dimension of UðuÞ we consider the interval J̃ ¼ ½em; enþkþ1	: Then u has the

unique zero intervals J and Ĵ ¼ ½emþkþ1; enþkþ1	 in J̃; and, since

en ¼ ynqþi; emþkþ1 ¼ yðmþkþ1Þqþi; i ¼ 0;y; q � 1;

it is easily verified that

UðuÞjJ̃ ¼ spanfBnq;Bnqþ1;y;Bðmþkþ2Þq�l�2gjJ̃:
Therefore,

d̃ :¼ dim UðuÞ ¼ dim UðuÞjJ̃ ¼ ðmþ k þ 2� nÞq � l � 1:

Suppose that ½S\ZðuÞ	Xd̃ þ 1: Then, since uðenÞ ¼ uðemþkþ1Þ ¼ 0; u has at least d̃ þ 2

separated zeros

z0 ¼ enoz1o?ozd̃oemþkþ1 ¼ zd̃þ1:

Since uð jÞðenÞ ¼ uð jÞðemþkþ1Þ ¼ 0; j ¼ 0;y; l � q; it then follows that uð jÞ has at least

d̃ þ j þ 2 separated zeros in J̃; j ¼ 0;y; l � q: But, uðl�qÞAP0
qðDÞ which implies that

uðl�qÞ has at most q separated zeros in each Ii; i ¼ nþ 1;y; mþ k þ 1; i.e., uðl�qÞ has
at most

Xmþkþ1

i¼nþ1

q ¼ ðmþ k þ 1� nÞqoðmþ k þ 1� nÞq þ 1 ¼ d̃ þ l � q þ 2;

a contradiction. (This part can also be proved by applying [6, Theorem 4.53].)
Finally, assume that u has exactly r zero intervals Ji ¼ ½emi

; eni
	 satisfying eni

oemiþ1
;

i ¼ 1;y; r � 1 with rX2 in ½a; b	: Set Jrþ1 ¼ ½emrþ1
; enrþ1

	 where emrþ1
¼ em1þkþ1; enrþ1

¼
en1þkþ1; and J̃i ¼ ½emi

; eniþ1
	; i ¼ 1;y; r: Then analogously as above it is easy to see
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that

UðuÞjJ̃i
¼ spanfBniq;Bniqþ1;y;Bðmiþ1þ1Þq�l�2gjJ̃i

;

i ¼ 1;y; r; and

dim UðuÞ ¼
Xr

i¼1

dim UðuÞjJ̃i
: ð4:9Þ

Since every J̃i corresponds to the interval J̃ in the above considered case of a unique
zero interval, we can apply the above arguments and obtain that

½J̃i\ZðuÞ	pdim UðuÞjJ̃i
;

i ¼ 1;y; r: Then the statement follows from (4.9).
This completes the proof of Claim 4.1. &

Claim 4.2. U ¼ P
l�q
l ðDÞ is a WT-system on ½a; b	; if its dimension is odd.

Proof. Assume that there exists a ûAU such that û has at least qðk þ 1Þ sign changes

in ða; bÞ: Then, similarly arguing as in the proof of Claim 4.1, we obtain that ûðl�qÞ

has at least qðk þ 1Þ sign changes in S: In fact, ûðl�qÞ must have at least qðk þ 1Þ þ 1
sign changes in S; because qðk þ 1Þ is odd. Thus it follows that

½S\Zðûðl�qÞÞ	Xqðk þ 1Þ þ 1:

But this contradicts (4.5), since ûðl�qÞAP0
qðDÞ and P0

qðDÞ is a space of piecing together

the Haar systems Ui ¼ Pq; iAZ; satisfying dim P0
qðDÞ ¼ qðk þ 1Þ: &

Claim 4.3. Let qðk þ 1Þ be even and define

Ũ ¼ fũAU : ũACl�qþ1ðek � e; ek þ eÞ for e40 sufficiently smallg:

Then dim Ũ ¼ qðk þ 1Þ � 1 and Ũ is a WT-system on ½a; b	:

Proof. Recall first that uACl�qðRÞ for every uAU : Since in addition every ũAŨ is at
least l � q þ 1 times continuously differentiable in a neighborhood of the knot ek; the

periodic spline space Ũ is defined by the given knot sequence D with the difference
that ek (and all of its periodic analogues fekþiðkþ1ÞgiAZÞ are chosen to be of

multiplicity q � 1 (the multiplicity q of the other knots in D remains unchanged).
Thus it follows that

d̃ :¼ dim Ũ ¼ dim U � 1 ¼ qðk þ 1Þ � 1:

Suppose now that there exists a ũAŨ such that ũ has at least d̃ sign changes in ða; bÞ:
Since by assumption d̃ is odd, as in the proof of Claim 4.2 we can show that ũðl�qÞ has

at least d̃ þ 1 sign changes in S:
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Let D ¼
S

iAZ ðei; eiþ1Þ,fekþjðkþ1ÞgjAZ and set

ûðxÞ ¼
d

dx
ũðl�qÞðxÞ if xAD;

0 if xAR\D:

8<
:

Since û is a piecewise polynomial of degree q � 1 on D; it has at most q � 1 zeros with
a sign change in each ðei; eiþ1Þ; i ¼ 0;y; k � 2; and at most 2q � 2 zeros with a sign
change in ðek�1; ekþ1Þ (note that û is continuous at ek). Moreover, û can change the
sign in ðei � d; ei þ dÞ; i ¼ 0;y; k � 1; for some d40 sufficiently small. Thus it
follows that û has at most

ðk � 1Þðq � 1Þ þ 2q � 2þ k ¼ qðk þ 1Þ � 1 ¼ d̃

sign changes in S: On the other hand, ũðl�qÞ has at least d̃ þ 1 sign changes in S which

implies that û must have at least d̃ þ 1 sign changes in S; a contradiction.

Thus we have shown that Ũ is a WT-system on ½a; b	: &

Claim 4.4. Let uAU\f0g and let a set fxigmþ1
i¼1 of separated zeros of u be given

satisfying

apx1ox2o?oxmpbpxmþ1 ¼ x1 þ b � a ð4:10Þ
and xm � x1ob � a where 1pmpdim UðuÞ: Then there exists a ũAUðuÞ\f0g such

that

ð�1Þi
ũðxÞX0; xA½xi; xiþ1	; i ¼ 1;y;m: ð4:11Þ

Proof. We consider several cases.
Case 4.4.1. Assume that UðuÞ ¼ U : Let d :¼ dim U ¼ qðk þ 1Þ and let a set of

separated zeros of u be given by (4.10). Suppose first that m ¼ d: Since UðuÞ ¼ U ; u

has at most finitely many zeros in ½a; b	: We show that u changes the sign at xi;
i ¼ 2;y;m: Otherwise, u0ðxi0Þ ¼ 0 for some i0Af2;y;mg: Moreover, it is easy to

see that for every iAf2;y;m þ 1g there exists a ziAðxi�1; xiÞ such that u0ðziÞ ¼ 0 and
fxi0 ; z2;y; zmþ1; z2 þ b � ag are separated zeros of u0: This implies that

½S\Zðu0Þ	Xm þ 1 ¼ d þ 1:

By a repeated application we finally obtain that

½S\Zðuðl�qÞÞ	Xd þ 1:

But this contradicts (4.5), because uðl�qÞAP0
qðDÞ and dim P0

qðDÞ ¼ qðk þ 1Þ:
In the same way we can show that ZðuÞ-½x1; xmþ1	 ¼ fxigmþ1

i¼1 :
Thus we have shown that u has exactly m þ 1 zeros in ½x1; xmþ1	 and changes the

sign at xi; i ¼ 2;y;m: Hence setting ũ ¼ e u for some eAf�1; 1g we obtain

ð�1Þi
ũðxÞX0; xA½xi; xiþ1	; i ¼ 1;y;m:

Assume now that mpd � 1 and d is even. Then arguing in the same way as in Case
3.6.1 and applying Claim 4.3 we obtain a ũAU\f0g such that (4.11) holds. If d is odd,
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then by Claim 4.2 U itself is a WT-system on ½a; b	 and arguing analogously as in the
case when d is even a ũAU\f0g with the desired properties can be found.

Case 4.4.2: Assume that u has at least two zero intervals J1 ¼ ½em1
; en1 	 and J2 ¼

½em2
; en2 	 in ½a; b	 such that en1oem2

and u has at most finitely many zeros in ½en1 ; em2
	: Let

fxigm
i¼1-ðen1 ; em2

Þ ¼ fyigr
i¼1 such that y0 ¼ en1oy1o?oyroem2

¼ yrþ1: Define

ûAV ¼ S
l�q
l ðDÞ satisfying û ¼ 0 on ½a; en1 	,½em2

; b	 and û ¼ u on ðen1 ; em2
Þ: Since V

satisfies Property A on ½a; b	; the subspace VðûÞ satisfies Property A on ½a; b	: Then,
considering several cases as in Case 3.6.2 we find a ũAVðûÞ\f0g such that (4.11)
holds.

Moreover, ũð jÞðaÞ ¼ ũð jÞðbÞ ¼ 0; j ¼ 0;y; l � q: Therefore, ũAUðuÞ:
Case 4.4.3: Assume that u has a unique zero interval J ¼ ½em; en	 in ½a; b	: Then by

definition of U ; u has an additional zero interval J̃ ¼ ½emþkþ1; enþkþ1	 in the interval

½em; enþkþ1	: Since S
l�q
l ðDÞ also satisfies Property A on ½a; a þ 2ðb � aÞ	; analogously

arguing as in Case 4.4.2 we obtain the desired function ũ:
This completes the proof of Claim 4.4. &

Proof of Theorem 8. Let U ¼ P
l�q
l ðDÞ: If q ¼ l; the statement follows from Case 4.1.

Otherwise, let qAf1;y; l � 1g: Since the constant functions are contained in U ; it

follows that ZðUÞ ¼ |: Moreover, in view of Claim 4.1, statement (2)(a) of Theorem
5 is satisfied. Finally, statement (2)(b) of Theorem 5 follows from Claim 4.4.

Hence by Theorem 5, P
l�q
l ðDÞ satisfies Property Aper: &

Remark. For the special case when q ¼ 1 and the weight function w ¼ 1 it was

shown in [3] that every fACb�a has a unique L1-approximation from U ¼ Pl�1
l ðDÞ:
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