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Abstract

In this paper we give a characterization of the finite-dimensional subspaces of periodic, real-
valued and continuous functions which admit uniqueness of best L'-approximations. Our
investigations are based on the well-known Property A which characterizes a finite-
dimensional subspace of continuous functions to be a unicity subspace with respect to a
class of weighted L'-norms.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let C,—, denote the subspace of all continuous, (b — a)-periodic functions
f:R—>R where a<b, i.e.,

Cro={feCR):f(x)=f(x+ (b—a)), xeR}.

We are interested in a characterization of the finite-dimensional subspaces U of C;,_,,
such that every f' e C,_, has a unique best approximation from U with respect to a
class of weighted L'-norms. The central role in our investigations plays Property A
(Definition 1), introduced by Strauss [7] as a sufficient condition for L!(u)-unicity
subspaces of real-valued continuous functions defined on [a,b] where u = 4, the
Lebesgue measure. In a series of papers written by Kroo, Pinkus, Schmidt, Sommer,
Wajnryb (a detailed survey of the results has been given by Pinkus in his excellent
monograph [4]), and by Li [2], Property A was applied to give a characterization of
L'(u)-unicity subspaces of real-valued continuous functions defined on certain
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compact subsets of RY (d>1) for a class of ‘admissible’ measures (Theorem 1).
Recently, Babenko et al. (see e.g. [1] for references) also obtained interesting results
on uniqueness of best L'-approximations.

Since every real halfopen interval [a,b) is homeomorphic to the unit sphere S in
R?, the problem of uniqueness of best L!(u)-approximations of feC,_, from a
subspace U of Cp_, can be considered as an L' (u)-approximation problem in C(S),
the space of all real-valued continuous functions on S. In fact, using some general
necessary conditions for Property A due to Pinkus and Wajnryb [5] we are able to
give a characterization of the finite-dimensional subspaces U of C,_, such that every
f€Cy_, has a unique best L'(u)-approximation for a class of weighted measures u
(Theorem 5).

Finally, we present some examples for L!(x)-unicity subspaces in Cj_,, including
spaces of trigonometric polynomials, of piecing together Haar systems and of
periodic polynomial splines. In particular, we obtain a result of Meinardus and
Niirnberger [3] who showed that every function feC,_, has a unique L'-
approximation (with respect to 1) from U = P,,(K,), the subspace of periodic
polynomial splines of degree m>1 with a set of simple knots K,.

2. Property A in the nonperiodic case

A central role in best L' (u)-approximation problems plays Property A. To define
it in a general setting, let KR (d>1) such that

(1) K is a compact set,
(2) K =intK (the closure of its interior).

U will always denote an n-dimensional subspace of C(K), the space of all real-
valued continuous functions defined on K. We define a set W of measures on K by
W={u:dp=wdi, weL”(K), essinf w>0 on K}

(/. means the Lebesgue measure on K). For ue W, the L'(x)-norm is defined by
11l = [ 17 1dn (rect.

Let Cy(K, u) denote the linear space C(K) endowed with norm || - |[,. We say that U
is a unicity space for Ci(K,u), ue W, if to each f e C(K) there exists a unique best
approximation from U in the norm || - [[ .
We need some notations as follows. Let for any ge C(K) and any subset V' of

C(K),

Z(g) = {xeK:g(x) =0},

Z(V)={xeK:v(x) =0 for all ve V},

supp V = K\Z(V).

Let us now define Property A (cf. [4, p. 98] for its history).
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Definition 1. We say that U satisfies Property A if to each nonzero ue U and
u*e C(K) such that |u*| = |u| on K there exists a 7e U\{0} for which

(1) #=0 a.e. on Z(u) (with respect to A),
(2) du*>=0 on K.

Property A is closely related to the problem of existence of unicity spaces for
Ci(K, u). In fact, it gives a characterization of such subspaces with respect to every
uew.

Theorem 1 (See Pinkus [4, p. 58]). A finite-dimensional subspace U of C(K) is a
unicity space for C\(K, u) for all pe W if and only if U satisfies Property A.

It should be noted that this result holds for a bigger class of ‘admissible’ measures
which are absolutely continuous with respect to A.

Various consequences of Property A which, in particular, are very helpful for our
periodic problem were obtained. To describe them we need some definitions.

Definition 2. Let Dc K, D (relatively) open. Then [D] will denote the number
(possibly infinite but necessarily countable) of open connected components of D.

Definition 3. We say that U decomposes if there exist subspaces ¥ and V of U with
dim ¥'>1, dim V>1 such that

D U=veV,ie, U=V+Vand VoV ={0},
(2) supp V nsupp V = 0.

To simplify the notations we also define:

Definition 4. For ue U, set
Uu)=A{v:velU, v=0 a.e. on Z(u)}.

The following consequences of Property A due to Pinkus and Wajnryb are very
important to our investigations.

Theorem 2 (See Pinkus [4, Theorems 4.6, 4.12]). Suppose that U satisfies Property A.
Then

(1) [K\Z(u)]<dim U(u) for every ue U, and
(2) U decomposes, if [K\Z(U)]=2.

Remark 1. (1) It is easily seen that if U decomposes by subspaces ¥ and V, then U
satisfies Property A if and only if both ¥ and V satisfy Property A [4, p. 70].

(2) In particular, Pinkus showed that if K =R, the first statement of Theorem 2 is
both necessary and sufficient for U to satisfy Property A [4, p. 75].
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(3) For the case when K <R, Pinkus gave an interesting classification of all finite-
dimensional subspaces U of C(K) which satisfy Property A. As a result, such a space
has to have a ‘spline-like’ structure [4, p. 75]. A slightly simplified characterization of
such spaces on K = [a, b] was obtained by Li [2].

3. L'(u)-approximation by subspaces of periodic functions

Assume now that U and W will denote an n-dimensional subspace of C,_, and the
set of weighted measures on K = [a, b] defined in Section 2, respectively.

We say that U is a periodic unicity space for Cy(la,b], p), ne W, if to each fe Cp_,
there exists a unique best approximation from U on [a, )] in the norm || - |,

Since every function in C,_, is defined on R and has period b —a,
our approximation problem can be ‘shifted’ to any interval [o,ff] with
p—a=>b—a by extending every measure ue W, i.e., du=wdi, to a ‘periodic’
measure [ such that

dii = wd
and
. w(x) if xela, b,
Ww(x) = .
w(x+ (b—a)) otherwise.

This implies that if f'e Cp_,,
b B
min / |f—u|du:min/ |f —uldg.
uelU J, uel [f,

Moreover, to apply some of the statements of the nonperiodic case in Section 2, we
consider our periodic approximation problem as a nonperiodic problem on C(S)
where S denotes the unit sphere in R*. In fact, both problems are actually the same,
because every halfopen interval [a,b) is homeomorphic to S, for instance by the
mapping ¢ : [a,b) — S defined by

@((1 — t)a + tb) = (cos 2nt,sin 2xnt), t€0,1).

In particular, ¢ defines a counterclockwise order on S setting ¢(c)<o¢(d) if
a<c<d<b. Thus, to simplify the following arguments, we identify (if necessary) the
function f'e C,_, and the subspace U of C,_, with a function and a subspace of
C(S), again denoted by f and U, respectively. It should be noted that for e W the
L'(u)-norm of feC,_,, taken over [a,b] and S, respectively, differs only by a
constant factor independently of f.

Although for the compact set K = ScR? the additional assumption that K =
int K does not hold (in the topology of R?), some of the statements in Section 2
remain valid. In fact, the following statements still hold.



M. Sommer | Journal of Approximation Theory 123 (2003) 89-109 93

Theorem 3. A finite-dimensional subspace U of Cy_, is a periodic unicity space for
Ci([a, b], 1) for all pe W if and only if U (as a subspace of C(S)) satisfies Property A
on S.

Proof. Following the lines of the proof of Theorem 1 it turns out that the arguments
are also true in the case when Uc C(S). Thus the statement follows immediately
from Theorem 1. [

Remark 2. (1) To make clearer the difference between the statements that U satisfies
Property A on [a, b] (which corresponds to the nonperiodic case) and Property A on
S (U considered as subspace of C(S)), respectively, we give the following definition:
We say that the subspace U of C;_, satisfies Property Ay, if to each nonzero ue U
and u* € Cp_, such that |u*| = |u| on [a, ] there exists a i7e U\{0} for which

(1) =0a.e. on Z(u),
(2) du* >0 on [a,b].

Thus, U satisfies Property A on S if and only if U satisfies Property Ape,.
(2) It is easily seen that if U satisfies Property A, then U(u) satisfies Property
Aper for every ueU.

Theorem 4. Suppose that U satisfies Property Ape. Then

(1) [S\Z(u)]<dim U(u) for every ue U, and
(2) U decomposes, if [S\Z(U)]=2.

Proof. Identify again U with a subspace of C(S). Then U(u) corresponds to a
subspace of C(S) for every ue U, and Z(u), Z(U) correspond to subsets of S.
Now following the lines of the proof of Theorem 2 it turns out that the same
arguments can be applied to the case when U< C(S). Thus the statement follows
from Theorem 2. [J

Remark 3. (1) Of course, Property A, is weaker than Property A on K = [a, b]. For
instance, let K = [0, 1] and let U = span{u;,u,} = C;_o where u;(x) = 1 and up(x) =
(x=D(x—13), xe[0,1]. Then it follows that [K\Z(u,)] =3 which, in view of
Theorem 2, implies that U does not satisfy Property A on [0, 1].

But, considering u, as a function on S, it obviously follows that [S\Z(u;)] =2 =
dim U(u) = dim U. In fact, we can show that U satisfies Property Ap;. Suppose
that u = cju; + coup € U\{0}. Let u* € Cy_¢ with |u*| = |u|. Assume first that u has no
sign change on (0, 1). Then #* has no sign chance on (0,1) and euu* >0 on [0, 1] for
some ¢€{—1,1}. Assume now that u has a sign change € (0, 1). Then by definition
of u; and up, Z(u) = {X, 1 — £}. This implies that either eu* >0 or eu* = u on [0, 1] for
some ¢€{—1, 1} (recall that #*(0) = u*(1)). Then in the first case, euju* >0 while in
the second case, euu* >0 on [0, 1].
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Thus it follows from Theorems 3 and 1, respectively, that for every fe C;_ and
each pe W there exists a unique best L'(u)-approximation from U, and there must
exist fe C[0, 1] and jie W such that ffails to have a unique best L' (ji)-approximation
from U.

(2) To obtain the same number of connected components of S\Z(u) and
[a, b\Z(u), respectively, we use the periodic properties: Let ue U < C,_, and assume
first that Z(u) =0. Then obviously, [S\Z(u)] = [K\Z(u)]=1 where K = [a,b].
Assume now that Z(u) #0. Let £€ Z(u) and consider u on K = [£, £+ b — a]. Since
ue Cp_gq, we have u(X¥ + b — a) = 0. This implies that

[S\Z(w)] = [K\Z(u)]-

Thus, statement (1) of Theorem 4 is also satisfied replacing S by an interval K which
depends on u.

4. Characterization of Property A

In the nonperiodic case the inequality
[K\Z(u)] <dim U (u) (4.1)

for every ue U is both necessary and sufficient for U to satisfy Property A if K <R
(see Remark 1). The sufficiency is not true for periodic approximation in general as
the following example will show.

Example 1. Let K = [0, 1] and assume that U = span{u;,u,} < C;_¢ where u;(x) =
(x=H(x=3) and up(x) = x(x = 1)(x — 1), xe[0,1]. Let u = cju; + cour € U. We first
show that [S\Z(u)]<2. This is obviously true if ¢; = 0 or ¢; = 0. Therefore, assume
that ¢;#0, i = 1,2. Without loss of generality, let ¢; = 1 and ¢, <0. This implies that
u(1) = u;(1)>0. Since u coincides on [0, 1] with the polynomial

px) =(x—-pPlx—P+axix—3x-1), xeR

and lim,_, o, p(x) = — o0, it follows that p has a zero in (1, c0). Thus, u can have at
most two zeros in [0, 1] (in fact, it has two) and, therefore,
[S\Z ()] <2.

We now show that U fails to satisfy Property Ape;. On the contrary assume that U
has this property. Then, since u* = |up| € Cj_, there must exist a #7e U with u*ii>0,
ie.,, =0 on [0,1]. Let i = cju; + coup. Then ¢; #0, because u, changes the sign on
(0,1), and it follows that sign#(0) =signc¢; and sign IJ(%) = —sign¢y, a contra-
diction.

This shows that statement (4.1) fails to be a sufficient condition for Property Ape,
in general.
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We now characterize all U in C,_, which satisfy Property Ay... On the basis of
Theorem 4 we only have to treat the cases Z(U) =0, Z(U) = {a,b} and Z(U) =
{X} for some Xe(a,b), respectively. Since we identify U with a subspace of C(S),
and, therefore, the points ¢ and b correspond to a single point on S, the cases
Z(U) ={a,b} and Z(U) = {&X} for some Xe(a,b) can be actually treated in the
same way.

Case 1: Assume that Z(U) = {X} for some X € (a,b). Since u(x) = 0 for every ue U,
we consider U as a subspace of periodic functions on K = [¥, X+ b — a]. Assume
that U satisfies Property Ap,. It is then easily seen that U even satisfies Property A
on K, i.e., the more general nonperiodic case is given. Indeed, let ue U\{0} and
u*e C(K) such that |u*| = |u| on K. Since u(X) = u(X+ b —a) =0, it follows that
u*(X) = u*(X+ b —a) = 0. Hence, u* can be continuously extended to a periodic
function on R with period b — a, i.e., u” € Cp_,. Then, since U satisfies Property A,
there exists a iie U\{0} for which # =0 a.e. on Z(u) and #u*>0 on K.

Thus we have shown that U (as a subspace of C(K)) satisfies Property A
on K.

But for this case, Pinkus [4, Theorem 4.16] and Li [2] totally classified all U = C(K)
which satisfy Property A. In particular, they showed that such a subspace U has to
have a spline-like structure.

Thus, there still remain the case where Z(U) = 0.

Case 2: Assume that Z(U) = (. This is the actually interesting case of our periodic
approximation problem. We are able to characterize all subspaces U of C,_, which
satisfy Property Aper.

Before stating the main result, we give the following definition.

Definition 5. We say that [¢,d] =R is a zero interval of ue Cp_, if u = 0 on [c,d], and
u does not vanish identically on (¢ — ¢, ¢) and on (d,d + ¢) for any ¢>0.

Moreover, we say that zeros {xi}f.‘:l <R of ueCy_, such that x;<--- <x; are
separated zeros of u if there exist {y[}f:_ll satisfying y; e (x;, xi01), i =1, ...,k — 1, for
which u(y;) #0.

Theorem 5. Assume that U is an n-dimensional subspace of Cy_, satisfying Z(U) = Q.
The following statements (1) and (2) are equivalent.

(1) U satisfies Property Ape.
2) (a) [S\Z(u)]<dim U(u) = d(u) for every ueU.
(®) For every nonzero ueU and every set {xi}:”;]l of separated zeros of u
satisfying

asx;<-- <xm<b<xm+l = X1 +b —a
and x,;, — x1 <b — a where 1 <m<d(u) there exists a iie U(u)\{0} such that

(*l)iﬁ(x)>0> Xex,xip1], i=1,...,m
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Remark 4. (1) Before proving the theorem, we want to point out that statement
(2)(b) is closely related to an important subclass of subspaces, the weak Chebyshev
spaces. An m-dimensional subspace V of Cla,b] is said to be a weak Chebyshev
(WT-) subspace if every ve V" has at most m — 1 sign changes on [a, b], i.e., there do
not exist points a<x; < -+ <Xp,+1 <b such that

v(xi)o(xir1)<0, i=1,...,m.

The relationship of statement (2)(b) to WT-spaces is based on the following result
(for details on WT-spaces cf. [4, p. 204]):
If V is an m-dimensional WT-subspace of Cla, b] and a set of points is given by

Yo=a<y;<--<yp<b=yr1, k<m-1,
then there exists a 7€ \{0} satisfying
(=D)'8(x)=0, xelyi_,yi], i=1,.. k+1.

(2) Another relationship to properties of WT-spaces is given by the following fact:
If U< Gy, satisfies Property Ay, and for ue U, [c,d] is a zero interval of u with
a<c<d<b, then U(u) satisfies Property Ap., (Remark 2). Moreover, it follows that
U(u) is a WT-subspace on I. = [c,c+ b —a]. Indeed, suppose there exists a
ie U(u)\{0} with at least d(u) sign changes on 1. This implies that [I\Z ()] >d(u) +
1, while in view of Theorem 4,
[I\Z (7)) <dim U(7) <d(u),

a contradiction (recall that ii(c) = éi(c + b — a) = 0).

In addition, it follows that Case 1 is given, because ce Z(U(u)). Hence applying
the classification results of the nonperiodic case, a characterization of U(u) by a
spline-like structure is obtained (see Case 1 above).

Proof of Theorem 5. (1) = (2)(a). This is a consequence of Theorem 4.
= . Let ue and let for some me{l,...,d(u)} a set {x;}..| o
(1) = (2)(b). Let ue U\{0} and let f {1, d(} a set {x})" of
separated zeros of u be given satisfying
as<xX| << <Xy <b<xpp1 =x1+b—a

and x,, — x; <b — a. In particular, x,,;| > Xx,,, because x,,,.1 — x; = b — a. Set t; = x;,
i=1,...,m and complete this set by points 7, <fp 1< <lgu)<Xmi1 to a set of
d(u) points. Let {vy, ..., v} form a basis of U(u). We distinguish.

Assume first that det(v,-(tj))f(;’:)l #0. Then m<d(u), because ueU(u) and
u(t;)=0, i=1,...,m. Hence there exists a ie U(u) satistying #(f;) =0, i=
1,...,d(u) — 1, and (t4,)) = 1. In particular, #(x,1) = 0. Then there exists a
u* e Cy_, such that

| if xe[li,ti+1], i:1,...,m—1,
(=D)"[@(x)| if x€[tm, Xme1]-
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Hence it follows that |u*| =|i|. Since U satisfies Property Ay, there exists a
e U(@)\{0} = U(u)\{0} satisfying

m*>=0 on S.
This implies that

(=D)'ia(x)=0, xelxjxi], i=1,...,m.

If det(vi(tj));{s.‘:)l =0, there exists a non-zero ue U(u) satisfying u(z;) =0, i=
1, ...,d(u). Then concluding analogously as above we obtain the desired statement.
(2) = (1): Let u*e U\{0} and assume that S\Z(u*) = |J'_, 4;, the union of the
connected components. To show Property Ap.; we must prove that for any choice of
ge{-1,1},i=1, ...,/ thereexists a e U(u*)\{0} such that g7=00n 4;,i =1, ..., /.
Let any set{e,...,&} of signs be given. It first follows from (2)(a) that
[<dim U(u*) =d(u*). If Z(u*) =0, then [/ =1 and setting @ = & |u*| e U(u*)\{0},
the statement follows. Therefore, assume that Z(u*) #0. Then, there must exist a set
{x;}741 of separated zeros of u* satisfying

A<X| << <Xp<b<xp 1 =x1+b—a

and

i
U Aic(x1,x2) if gy = =g,
=1

15

U Aic(x2,x3) if 541 = —&i, 841 = -+ = &,
i=i 41

i”l

U dicComxmn) if &, 0= =&, 80, 00 = - =&, =&
i:im—l"’1

Of course, 1 <m</<d(u*) and x,,, <X, which implies that x,, — x; <b — a. Then
by hypothesis, we obtain a #e U(u*)\{0} satisfying

(—l)iﬁ(x)ZO, X€ X, xip1], =1, ...,m.
Assume, without loss of generality, that ¢, = —1. Then by the choice of {x,-};";]l, we
have

giz0 on A4;i=1,...,1L

This completes the proof of Theorem 5. [

Before presenting examples of some nontrivial classes of subspaces which satisfy
Property Ape; we want to point out some differences between the characterizations of
Property A in the nonperiodic case due to Pinkus and Li and our characterization of
Property Ape;. For instance, Li [2] gave the following characterization.
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Theorem 6. Let U denote a finite-dimensional subspace of Cla,b] and assume that
Z(U)n(a,b) = 0. Then U satisfies Property A if and only if U satisfies the following
conditions:

(1) U is a weak Chebyshev space;
(2) U([e,d]) = U([a,d]) ® U([c,b]) for all a<c<d<b, where for any a<o<f<b,

Ul B)) = {ueU:u=0 on [xB]}.

Remark 5. (1) The second condition implies that every function ue U([c,d])
‘generates’ a function v in U such that v =0 on [¢,d] and v =u on [d,b] (and,
analogously, a function ¢ in U such that # =0 on [¢,b] and ¢ = u on [a,c]|). This
property is not true in the periodic case in general: For instance, let K = [0, 3] and
assume that U = span{u;,us} = C5_¢ where u;(x) = 1 and

I—x if 0<x<l1,
up(x) =40 if l<x<2,
x—2 if 2<x<3.

Then U satisfies Property Ap,, because U is a space of piecewise polynomials on K
with the knots x; =i, i =0, 1,2, 3 (see Example 3). But, U fails to satisfy statement
(2) of Theorem 6, since U([1,2]) = span{u,} and U([0,2]) = {0}, U([1,3]) = {0}.

(2) The above example fails to be a weak Chebyshev space, because u, — %ul has
two sign changes in (0, 3). Hence statement (1) of Theorem 6 is also not true in the
periodic case in general.

Example 2 (Trigonometric polynomials). Let K = [0,2n] and assume that U
denotes the (2n + 1)-dimensional subspace of all trigonometric polynomials u of
order n, i.e.,

n
u(x) = ap + Z (ajcosjx + bjsin jx), xe[0,2n].
=1

It is well-known that U is a Haar system on [0,2x), i.e., every nonzero ue U has at
most 2n zeros in [0,27). Hence U(u) =U for every nonzero ueU and
[K\Z(u)]<2n+ 1 =dim U which implies, in view of Remark 1, that U satisfies
Property A on K. Then in particular, U satisfies Property Ape;.

Example 3 (Piecing together Haar systems). Let a =ey<e;<---<exy = b. On
each interval I; =[e;_1,¢], let U; be a Haar system of real-valued continuous
functions with dimension n;>1, i =1, ...,k + 1. For convenience, we especially
assume that n; >2 and ng =2. V will denote the subspace of Cla, b] defined by

V ={veCla,b]:v| el i=1,....k+1}.

It is well-known (cf. [4, p. 80]) that dim V' = ijll n; —k and V is a WT-system on

i

[a,b]. Moreover, V satisfies Property A on [a, b].
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To investigate its periodic analogue we consider the subspace U of Cj_, defined by
U={ueCpy:ul el i=1,....k+1}. (4.2)
Thus, U is the space of all periodic extensions of functions ve V' such that v(a) =

v(b).

Theorem 7. Let U be the space of periodic functions defined in (4.2). Then U satisfies
Property Ape.

To apply Theorem 5 we divide the proof of Theorem 7 into several parts.
Claim 3.1. Let U and V be given as above. Then

dim U = dim V — 1. (4.3)

Proof. Since n;>2 and n;,; =2, by the Haar condition of U; and Uy, respectively,
there exists a ve V" such that v(a) =1, v(e;) =0, v =0 on (e, ex), and v(ex) =0,

v(b) = —1. Hence v cannot periodically extended to a function in U which implies
that

dim U<dim V.
To show the statement we set dim V' =n+ 1 (n>0) and suppose that {vy, ..., v,41}

forms a basis of V" such that
vy>0on |[a,b], vi(a)=0, i=2,....n+1.

(Recall that each U; is a Haar system on I; which implies that there exists a positive
function in U;.)

We show that v;(b)#0 for some i€{2,...,n+ 1}. On the contrary, assume that
vi(h) =0, i=2,...,n+ 1. Let ue V such that u(a) = 1, u(e;) =0, u =0 on (e, ex),
and u(ex) =0, u(b) = 1 (u can be found analogously as the function v above using
the Haar condition of U; and Uy, respectively). Hence it follows that
{u, vy, ...,v,11} are linearly independent and can be periodically extended to
functions in U. This implies dim U>n + 1 = dim V/, a contradiction. Thus it follows
that v;(h)#0 for some /e{2,...,n+ 1}. Consider the n linearly independent
functions in V,

vi(a) —v1(b) . v;(b)
o, B == s,

O v (b)
Then we obtain that

0#01(a) =vi(a) =01(b), 0i(a)=0;(b)=0, i=2,...,n+1, i#l

0] = + i=2,...,n+1, i#l

which implies that {7y, ...,0-1,041,...,0,41} can be periodically extended to
functions in U. Thus,

n<dimU<dimV =n+1,

and it follows that dm U =n=dimV —1. O
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Claim 3.2. Z(U) = 0.

Proof. Since each U; is a Haar system on [;, there exists a positive function in U;,
i=1,....,k+ 1. Then piecing together such functions we obtain a continuous and
positive function & on [a,ex] such that i, e Ui, i =1,..., k. Since Uy is a Haar
system on I, and ny1 =2, by interpolation we construct a function e Uy, such
that d(ex) = 9(ex) and 6(b) = d(a). Piecing together ¢ and ¢ we then obtain a function
#e U such that 7> 0 on [a, ¢x]. This implies that [a, ex] " Z(U) = 0. Analogously, we
find a function #e U such that >0 on [e;, b] which implies that [e;,b]nZ(U) = 0.
Thus the statement is proved. [

Claim 3.3. Let ue U and assume that i€ V' such that @ = ul, ;. Then we obtain

dim V(ﬁ) lf IlquHcZ(u),

4.4
dim V(d) — 1 otherwise. (4.4)

d(u) = dim U(u) = {

Proof. It is obvious that d(u)=dim U(u)<dim V(). Assume first that
Lol = Z(u). Then, if ve V (i), it follows that v =0 on I} Ul;4,. Hence v has a
periodic extension in U(u) which implies that dim V(&) <d(u).

Assume now, without loss of generality, that u does not vanish identically on /.
Using the Haar condition of Uy, we find a ve V' such that

v=0on [ae], vb)=1.
Since I;.; fails to be a subset of Z(i), it follows that ve V' (i). But, since v has no
periodic extension in U, we obtain that

d(u)<dim V(i).
Arguing similarly as in the proof of (4.3), we can then show that

d(u) =dim V(@) — 1. O

Claim 3.4. Let ue U. Then
[S\Z(u)]<d(u). (4.5)

Proof. Set i = u|[a7b]. Then @ie V. Since V satisfies Property A, following Theorem 2
and Remark 1 we obtain that

[[a, b)\Z(i7)] <dim V(a).
This implies that if u(a) = u(b) #0,
[S\Z(u)] <dim V(&) — 1,
because the first and the last component of [a, b]\Z(i7) reduce to one connected

component of S\Z(u). Hence in view of (4.4), the statement follows. Moreover, the
statement also follows, if dim V(i) = d(u).
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Thus we have still to consider the case when u(a) =u(b) =0 and d(u) =
dim V() — 1. In view of (4.4), let us assume that I;,; fails to be a subset of Z(i).
Moreover, suppose that

[la, b\Z(#)] = dim V(&) = d(u) + 1.
Since @ does not vanish identically on I, and #(b) = 0, it has exactly 0<r<mp,; —
2 zeros e, <z < --- <z, <b there (recall that Uy, is a Haar system on I ,). Assume

that >0 on (b — ¢,b) for some ¢>0. Interpolating by Uy on I we obtain a
function 7€ V' such that

t=0on [a,e], 0(z)=0 i=1,..r ©&b) =1L

Then for some sufficiently small ¢>0, the function &# — ¢ie V' has a sign change on
(b — ¢,b) which implies that

[la,b\Z (& — ¢b)] =dim V(i) + 1.
Moreover, since & = 0 on [a, ¢;] and @ — ¢& does not vanish identically on I, we
obviously obtain that
V(i — ct) = V(i).
Thus it follows that
[la, b\Z (@ — ¢d)] =dim V (id — ¢b) + 1,
in contradiction to Property A of V.

Thus, we have shown that in the case when u(a) =u(b) =0 and d(u) =
dim V(i) — 1,

[\Z(w)] = [[a,b)\Z(@)] <dim V(@) — 1 = d(u). O

Claim 3.5. U is a WT-system on |a,b], if n (= dim U) is odd.
Proof. Assume that there exists a #e U such that « has at least n sign changes in
(a,b). If ti(a) = 4(b) = 0, then

[la,b\NZ(@)] = [S\Z(i)| zn+ 1 =d(@) + 1,

which contradicts (4.5). Hence, #i(a) = #(h) #0. But then, in view of the fact that n is
odd, ¢ must have at least n + 1 sign changes in (a, b) which contradicts the property
of ¥ to be a WT-system on [a,b]. O

Claim 3.6. Set
U= {ueU:u(a) =0}
Then dim U= n — 1 and U is a WT-system on [a, b].

Proof. Since there exists a ue U such that

u(a)=1, u=0on [e,e], ulb)=1,
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it is easily seen that dim U = n — 1. Assume now that there exists a 7€ U with at least
n — 1 sign changes in (a,b). Of course, ii(a) = @i(b) = 0. Then it follows from (4.5)
that [a,b\Z(d) = ngl A; (the union of the connected components) with / = n,
which implies that @ has exactly n — 1 sign changes. Consider first the case when # is
even. Then # has different sign on A; and on A;, respectively. Let eV such that
#(a)0(b) <0 (this function can be found analogously as the function v defined in the
proof of (4.3)). Then for some sufficiently small ¢ the function & + e¢fe V" has at least
n+ 1 sign changes in (a,b) which contradicts the property of V' to be a WT-system
on [a, b].

The case when n is odd can be treated analogously using a function 7€ V' such that
¥(a)d(h) > 0.

Thus it follows that U is a WT-system on [a,b]. [

Claim 3.7. Let ue U\{0} and let a set {x,-};";ll of separated zeros of u be given
satisfying

A< x| << <Xy <h<xpy1 =x1+b—a (4.6)
and x, — x1<b — a where 1 <m<d(u). Then there exists a e U(u)\{0} such that

(_1)iﬂ(x)>0a xelxy,xil], i=1,...,m.

Proof. We prove the statement by considering several cases.

Case 3.6.1: Assume that U(u) = U. Let a set of separated zeros of u be given by
(4.6). Suppose first that m = n. Since each ve V' has at most n; — 1 separated zeros in
Iiyi=1,....,k+1,andn+1=dimV = fo:ll n; — k, it follows that each ve V' has
at most n separated zeros in [a,b]. Hence the assumption m = n implies that

Z(u) AV [x1, Xrt] = {x: ™" and u has exactly n; — 1 of its zeros in each I;, i =
1, ...,k + 1. Moreover, e| ¢ Z(u), because otherwise e is a common zero of u|; and
ul;, which implies that u would have at most (n; — 1) + (np — 1) — 1 zeros in [; U L.

Then u could have at most "' n, — (k+1)—1=n—1 zeros in [a,b] contra-

dicting m = n. Analogously we obtain that Z(u) n{e;}~_, = 0. Then, since each U; is
a Haar system on [;, all the zeros of u in (a,b) must be sign changes.

We distinguish: If x,, <b, then u changes the sign at {x;}_, and setting & = eu for
some ee{—1, 1} the statement follows.

If x,, = b, then x| >a, because x,, — x; <b — a. Moreover, u(a) = 0, since u(x,,) =
0 and ue Cp_,. Then u would have m+ 1 = n+ 1 separated zeros {a,xy, ..., xp} In
[a, b] contradicting the above arguments on V.

Suppose now that m<n — 1 and n is even. Set

Yo=a, yi=Xx;, i=1,....m, .1 =>b if mis even
(then, in fact, m<n — 2, because n is even), and

Yo=a, yi=Xi1, i=1,....m—1, y,=b if mis odd.
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In both cases, using the statements on WT-systems given in Remark 4 we find a

iie U\{0} (recall that we have shown in Claim 3.6 that U is a WT-system on [a, b])
such that

(—1)iﬁ(x)>0, xeWi,yir1), i=0,...,m if mis even,
(—l)iﬂli(x)ZO, xenyir1), i=0,....om—1 if mis odd.

(If x; = a or x,,;, = b, the inequalities are also true for the degenerate intervals [yo, y1],
Vm—1,Vm] OF [V, ym+1], respectively, because @(a) = a(b) = 0 for every e U.)
Thus in both cases it follows that

(=1)"0(x) =0, xela,x1])u[xm,b],

which corresponds to the sign behavior of i on [x,,, x,,+1]. Hence # has the desired
properties.

Suppose now that n is odd and m<n — 1. Then by Claim 3.5, U itself is a WT-
system on [a,b]. Replacing the subspace U by U, if necessary, and arguing
analogously as above we obtain a function #7e U\{0} with the desired properties.

Case 3.6.2: Assume that u has at least two zero intervals Jy = [e;, /] and J> = [e), e,]
in [a,b] such that e;<e,, and at most finitely many zeros in [e;e,]. Let
{x:} n (e, ep) = {yi}i, such that yo=e; <y <--<p,<e, = y,11. Define eV
satisfying 1 = 0 on [a, e;]U e, b] and 1 = u on (e}, ¢,). Since V' satisfies Property A,
the subspace V(i) satisfies Property A. To use this property we distinguish several
cases:

Consider first the cases when x; ¢ (e;,¢,) and x;€(e,e,), m even, respectively
(hence x; = y; in the second case). In both cases, by the Property A there exists a
e V(4)\{0} such that

(_l)iﬂ(x)>07 XEWnyir1), i=0,...,r.

Finally assume that x;e(e;,e,) and m is odd. Define yo =e¢; and J;, =y, i =
1, ...,r. By the Property A there exists a iie V(:i)\{0} such that

(=)™ a(x)=0, xe[pi,Fin], i=0,...,r—1.

Moreover, in all cases i#(a) = #i(h) = 0 which implies that 7 has a periodic extension
in Cp_, (again denoted by #). Therefore, i7e U(u) and & has the desired properties
for some ee{—1,1}.

Case 3.6.3: Assume that u has a unique zero interval J = [e,, ¢,] in [a,b]. To derive
this case from Case 3.6.2 we generate a subspace V of piecing together Haar systems
for a bigger knot sequence as follows:

Let

ervivi=ei+b—a, IDipiyi = [@hpis Chiiti]
and

Uii14i = {ue C(Ir14i) s u(x) = d(x — (b — a)), x€lji14i, for some e U},
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i=1,...,k+ 1. We consider the linear space V defined by
V = {ve Cley, ez : vpel,i=1,..,2k+2}.

Of course, V has the same properties as V. In particular, it satisfies Property A.
Moreover, the given subspace U of C,_, can also be defined by

U={ueCp,:ulel,i=1..,1+k}

for any /e{l, ...,k +2}. We now consider the given function u on [e,, €;44+1]. Then
by hypothesis, u =0 on [e,, e, U [epiir1,€q1k+1] and u has at most finitely many
zeros in [eg,epik+1]. As in Case 3.6.2 we define iie V satisfying #=0 on
[0, €]V [eprhi1seaur2] and d=u on (eg,epikr1). Since d|, eV, i=p+1,....p+
k+ 1, and di(e,) = ii(e,1x11) = 0 for every die V(ii), every function e, e, DS @
periodic extension in U. Moreover, since V(i) satisfies Property A, similarly arguing

as in Case 3.6.2 we find a #e V(i) such that i has the desired sign behaviour on

lep, eprit1] (Where the separated zeros {x}™*+! are identified with a subset of the

sphere and, therefore, they correspond to a set of separated zeros in [e,, e, k1))
Thus the extension of # in U (again denoted by #) is a function with the desired
properties on [ey, e,141] and, therefore, on [a, b].

This completes the proof of Claim 3.7. O

Proof of Theorem 7. From Claim 3.2 it follows that Z(U) = (. Moreover, in view of
Claim 3.4, statement (2)(a) of Theorem 5 is satisfied. Finally, statement (2)(b) of
Theorem 5 follows from Claim 3.7.

Hence by Theorem 5, U satisfies Property Ape,. [

Example 4 (Periodic splines). Given k>0 and />1, let a = ey <e;<--- <epr1 = b.
Extend this knot vector to a knot sequence on R by

€i+j(/(+l):ei+j(bia)7 1:057k+17 JEZ\{O}
Set A={e;};,.; and I; = [e;_1,¢;], ieZ. By II; we denote the linear space of all
polynomials of degree at most /. For any ge {1, ...,/} we consider the linear space
S179(A) defined by

S, (A) = {se C"I(R) : 5|, eIy, i€ Z},

the subspace of polynomial spline functions of degree / with the fixed knots {e;},., of
multiplicity ¢. It is well-known (cf. [6, Theorem 4.5]) that dim Sf_q(A)\[aﬁb] =
!+ 1 + gk and a natural basis on [a, ] is given by

: (=) s (=)

1
Lx,...,x,(x—e),,....,(x—e)

b
where

( Vo= (x —¢&)" if x=e;,
TR0 if x<e.
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Moreover, it is well-known that Sf_"(A) is a WT-system on [a, b] [6, Theorem 4.55]
and satisfies Property A there [4, p. 81].

For that what follows we need a local basis of qu(A), the basis of B-splines. To
define it we split up each knot ¢; according to its multiplicity ¢ by setting

€ =Yig = Yigt1 = ** = V(it1)g-1, I€LZ.

Then it is well-known [6, Theorem 4.9] that a basis of Sffq(A) is given by {B,}
where B, is the unique B-spline satisfying

B, =0 on R\(yu,Vuti+1)s
B, (x)>0 for x&(yu, Yut+1),

Z B,(x) =1 for xeR.
nez

nez

Moreover, it is well-known [6, Theorem 4.64] that every subsystem
{By,, By +1, ..., By, } where uy, i, €2, iy <, spans a WT-space.
We are now interested in the subspace

P(A) = 87 (A) A Ca, (4.7)

the subspace of periodic splines of degree [ with the fixed knots {e;};., of multiplicity
q. It is easily verified that

dim Py Y(A) =1+ 14+ gk — (I — g+ 1) = q(k + 1).

Theorem 8. Let U = P;f"(A), the space of periodic splines defined in (4.7). Then U
satisfies Property Ape.

To prove this statement we distinguish two cases.

Case 4.1: Let g = 1. Then S?(A)ha’b] is obviously a space of piecing together the
Haar systems U; =I1;,i = 1, ...,k + 1. This implies that S})(A)|[a7b} corresponds to a
space V' as considered in Example 3. Hence by the arguments in the proof of
Example 3, the space U = PY(A) satisfies Property Aoper.

Case 4.2: Assume that qe{l,...,1—1}. To show that U= P (A) satisfies
Property Ape; we divide the proof into several parts.

Claim 4.1. Let uc U. Then
[S\Z(u)] <dim U(u). (4.8)

Proof. Assume first that U(u) = U and S\Z(u) =|J._, 4;, the union of the
connected components, where r=dim U + 1 = g(k+ 1) 4+ 1. Tt is easily seen that
foreach ie {1, ...,r} there exists a z; € 4; such that «/(z;) = 0 (the derivative of u) and

{z,};ill is a set of separated zeros of u’ (as a subset of R) satisfying, without loss of
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generality,
a<zi<-<z;<b<z;,1=z1+b—a
and z, — z1 <b — a. Hence
[S\Z(W)]=r.
By a repeated application of this argument we finally obtain that
[S\Z("= )] =r.
Moreover, u!~9 is a continuous and periodic spline function of degree ¢ which
implies that
u~0 e P)(A).
Since dim PS(A) = q(k + 1), we then have got that
[S\ZW" )| =r=q(k + 1) + 1 = dim PJ(A) + 1.

But this contradicts (4.5), because PS(A) is a space of piecing together the Haar
systems U; = Il,,ieZ, as considered in Example 3.

Assume now that « has a unique zero interval J = [e,, e,] in [a,b]. To determine
the dimension of U(u) we consider the interval J = [e,,e,441]. Then u has the
unique zero intervals J and J= [€utit1s €yik+1] IN f, and, since

€y = Yogtis  Curk+l = V(utk+)g+i> L= 0,....,g—1,
it is easily verified that

U(“)|j = Span{BquBvqﬁ—la "'aB(u+k+2)q—l—2}|j-
Therefore,

d=dim U(u) =dim U(u)|j = (u+k+2—-v)g—1—1.
Suppose that [S\Z(u)]>d + 1. Then, since u(e,) = u(e,x11) = 0, u has at least d 4 2
separated zeros

2o = 6 <z1 < <Zj<e€utk+1 = Zi-
Since ul/)(e,) = u'/) (ey4x41) =0, =0, ..., I — g, it then follows that u/) has at least
d+j + 2 separated zeros in J, j =0, ..., — ¢q. But, u'~9 ePg(A) which implies that

u~9) has at most ¢ separated zeros ineach I, i=v+1, ..., u+k+ 1, i.e., u"9 has
at most

utk+1 .

S og=(utk+1-vg<(u+k+1-v)g+l=d+1-q+2,

i=v+1

a contradiction. (This part can also be proved by applying [6, Theorem 4.53].)
Finally, assume that u has exactly r zero intervals J; = [e,, e, | satisfying e, <e,, ,,

i=1,...,r—1withr>2in [a,b]. Set J,;| = e, e, ]| Where e, = ey 111, €., =
ey +k+1, and J; = [e,, ey, ], i =1,...,r. Then analogously as above it is easy to see
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that
Uu)lj = span{By,q, By,g+1, ...,B(#i+l+1)q_/_2}|j’_,

i=1,...,r,and

dim U(u) = Z dim U(u)];. (4.9)
i=1

Since every J; corresponds to the interval J in the above considered case of a unique
zero interval, we can apply the above arguments and obtain that

AZ ()] <dim U(u)|;,

i=1,...,r. Then the statement follows from (4.9).
This completes the proof of Claim 4.1. O

Claim 4.2. U = Pg_q(A) is a WT-system on |a,b], if its dimension is odd.

Proof. Assume that there exists a 7ie U such that # has at least ¢(k + 1) sign changes
in (a,b). Then, similarly arguing as in the proof of Claim 4.1, we obtain that (/=%
has at least g(k + 1) sign changes in S. In fact, /"% must have at least g(k + 1) + 1
sign changes in S, because g(k + 1) is odd. Thus it follows that

[S\Z(@"" N = q(k + 1) + 1.

But this contradicts (4.5), since #!~%) € P)(A) and P)(A) is a space of piecing together
the Haar systems U; = I, i€ Z, satisfying dim P)(A) = g(k+1). O

Claim 4.3. Let q(k + 1) be even and define
U= {ieU:ieC " (e, — ¢, er +¢) for >0 sufficiently small}.

Then dim U = q(k + 1) — 1 and U is a WT-system on |a, b).

Proof. Recall first that ue C'~4(R) for every ue U. Since in addition every iie U is at
least / — g + 1 times continuously differentiable in a neighborhood of the knot ¢, the
periodic spline space U is defined by the given knot sequence A with the difference
that e, (and all of its periodic analogues {ei.ix+1)};cz) are chosen to be of
multiplicity ¢ — 1 (the multiplicity ¢ of the other knots in A remains unchanged).
Thus it follows that

d=dmU=dimU—1=¢q(k+1) - 1.
Suppose now that there exists a e U such that i has at least d sign changes in (a,b).

Since by assumption d is odd, as in the proof of Claim 4.2 we can show that 7/~ has
at least d + 1 sign changes in S.
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Let D =;cz (e, €ir1) U{ersjpn) }jez and set

d

iy ) if D
ix) = | @ (x) if xeD,

0 if xeR\D.

Since # is a piecewise polynomial of degree ¢ — 1 on D, it has at most ¢ — 1 zeros with
a sign change in each (e;,e;41), i =0, ...,k — 2, and at most 2¢ — 2 zeros with a sign
change in (ex_1,ex11) (note that i is continuous at e¢;). Moreover, # can change the
sign in (e; —d,e;+9), i=0,...,k— 1, for some >0 sufficiently small. Thus it
follows that i has at most

(k—1)(g—1)+2¢—2+k=qk+1)—1=d
sign changes in S. On the other hand, 7/~ has at least d + 1 sign changes in S which
implies that i must have at least d + 1 sign changes in S, a contradiction.
Thus we have shown that U is a WT-system on [a,b]. [

Claim 4.4. Let ue U\{0} and let a set {x,'}?fll of separated zeros of u be given
satisfying
Aa<xX|<xp < <Xp<b<xu1=x1+b—a (4.10)

and x, — x1<b —a where 1 <m<dim U(u). Then there exists a iie U(u)\{0} such
that

(=D)'a(x)=0, xelxi,xi], i=1,...,m. (4.11)

Proof. We consider several cases.

Case 4.4.1. Assume that U(u) = U. Let d . =dim U = ¢g(k+ 1) and let a set of
separated zeros of u be given by (4.10). Suppose first that m = d. Since U(u) = U, u
has at most finitely many zeros in [a,b]. We show that u changes the sign at Xx;,

i=2,...,m. Otherwise, #'(x;,) = 0 for some ipe{2, ...,m}. Moreover, it is easy to
see that for every i€ {2, ...,m + 1} there exists a z; € (x;_1, x;) such that #/(z;) = 0 and
{Xis 22y --+y Zmi1, 22 + b — a} are separated zeros of «'. This implies that

[S\ZW)]|zm+1=d+1.
By a repeated application we finally obtain that
[S\Z(u"= D) >d + 1.

But this contradicts (4.5), because u/~% € P)(A) and dim P)(A) = g(k + 1).

In the same way we can show that Z(u) A\ [x}, Xp1] = {x;}7H!

Thus we have shown that u has exactly m + | zeros in [xy, x,,+1] and changes the
sign at x;, i = 2, ...,m. Hence setting i = ¢u for some ¢e{—1, 1} we obtain
(=D)'d(x)=0, xelxi,xip1), i=1,...,m.

Assume now that m<d — 1 and d is even. Then arguing in the same way as in Case
3.6.1 and applying Claim 4.3 we obtain a e U\{0} such that (4.11) holds. If d is odd,
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then by Claim 4.2 U itself is a WT-system on [a, b] and arguing analogously as in the
case when d is even a i7e U\{0} with the desired properties can be found.

Case 4.4.2: Assume that u has at least two zero intervals J, = le,,, e, ] and J, =
ley,, ev,] in a,b] such that e, <e,, and u has at most finitely many zeros in [e,,, e,,]. Let
{xi}ilin(en,en) = {yitioy such that yo=e, <y1<- <y <ey, =yp1. Define
eV = Sf_"(A) satisfying @i = 0 on [a,e,,|U[e,,,b] and il = u on (e, ,e,,). Since V
satisfies Property A on [a, b], the subspace V(i) satisfies Property A on [a, b]. Then,
considering several cases as in Case 3.6.2 we find a #e V' (i)\{0} such that (4.11)
holds.

Moreover, @/)(a) = @/} () =0, j =0, ...,I — q. Therefore, ite U(u).

Case 4.4.3: Assume that u has a unique zero interval J = [e,, e, in [a,b]. Then by
definition of U, u has an additional zero interval J = [€u+kt1, €vik+1) in the interval
[ey, evii+1]. Since qu(A) also satisfies Property A on [a,a + 2(b — a)], analogously
arguing as in Case 4.4.2 we obtain the desired function i.

This completes the proof of Claim 4.4. O

Proof of Theorem 8. Let U = Pg_q(A). If ¢ = I, the statement follows from Case 4.1.
Otherwise, let ge {1, ...,/ — 1}. Since the constant functions are contained in U, it
follows that Z(U) = §. Moreover, in view of Claim 4.1, statement (2)(a) of Theorem
5 is satisfied. Finally, statement (2)(b) of Theorem 5 follows from Claim 4.4.

Hence by Theorem 5, P, %(A) satisfies Property Aper. [

Remark. For the special case when ¢ = 1 and the weight function w =1 it was
shown in [3] that every f € Cy_, has a unique L'-approximation from U = P/"!(A).
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