Uniqueness of periodic best L^{1}-approximations

Manfred Sommer
Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, D-85071 Eichstätt, Germany

Received 9 July 2002; accepted in revised form 2 April 2003
Communicated by Günther Nürnberger

Abstract

In this paper we give a characterization of the finite-dimensional subspaces of periodic, realvalued and continuous functions which admit uniqueness of best L^{1}-approximations. Our investigations are based on the well-known Property A which characterizes a finitedimensional subspace of continuous functions to be a unicity subspace with respect to a class of weighted L^{1}-norms.

(C) 2003 Elsevier Science (USA). All rights reserved.

Keywords: Uniqueness of best L^{1}-approximations; Periodic functions; Property A; Spline functions

1. Introduction

Let C_{b-a} denote the subspace of all continuous, $(b-a)$-periodic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ where $a<b$, i.e.,

$$
C_{b-a}=\{f \in C(\mathbb{R}): f(x)=f(x+(b-a)), x \in \mathbb{R}\} .
$$

We are interested in a characterization of the finite-dimensional subspaces U of C_{b-a} such that every $f \in C_{b-a}$ has a unique best approximation from U with respect to a class of weighted L^{1}-norms. The central role in our investigations plays Property A (Definition 1), introduced by Strauss [7] as a sufficient condition for $L^{1}(\mu)$-unicity subspaces of real-valued continuous functions defined on $[a, b]$ where $\mu=\lambda$, the Lebesgue measure. In a series of papers written by Kroó, Pinkus, Schmidt, Sommer, Wajnryb (a detailed survey of the results has been given by Pinkus in his excellent monograph [4]), and by Li [2], Property A was applied to give a characterization of $L^{1}(\mu)$-unicity subspaces of real-valued continuous functions defined on certain

[^0]compact subsets of $\mathbb{R}^{d}(d \geqslant 1)$ for a class of 'admissible' measures (Theorem 1). Recently, Babenko et al. (see e.g. [1] for references) also obtained interesting results on uniqueness of best L^{1}-approximations.

Since every real halfopen interval $[a, b)$ is homeomorphic to the unit sphere S in \mathbb{R}^{2}, the problem of uniqueness of best $L^{1}(\mu)$-approximations of $f \in C_{b-a}$ from a subspace U of C_{b-a} can be considered as an $L^{1}(\mu)$-approximation problem in $C(S)$, the space of all real-valued continuous functions on S. In fact, using some general necessary conditions for Property A due to Pinkus and Wajnryb [5] we are able to give a characterization of the finite-dimensional subspaces U of C_{b-a} such that every $f \in C_{b-a}$ has a unique best $L^{1}(\mu)$-approximation for a class of weighted measures μ (Theorem 5).

Finally, we present some examples for $L^{1}(\mu)$-unicity subspaces in C_{b-a}, including spaces of trigonometric polynomials, of piecing together Haar systems and of periodic polynomial splines. In particular, we obtain a result of Meinardus and Nürnberger [3] who showed that every function $f \in C_{b-a}$ has a unique L^{1} approximation (with respect to λ) from $U=P_{m}\left(K_{n}\right)$, the subspace of periodic polynomial splines of degree $m \geqslant 1$ with a set of simple knots K_{n}.

2. Property A in the nonperiodic case

A central role in best $L^{1}(\mu)$-approximation problems plays Property A. To define it in a general setting, let $K \subset \mathbb{R}^{d}(d \geqslant 1)$ such that
(1) K is a compact set,
(2) $K=\overline{\operatorname{int} K}$ (the closure of its interior).
U will always denote an n-dimensional subspace of $C(K)$, the space of all realvalued continuous functions defined on K. We define a set W of measures on K by

$$
W=\left\{\mu: d \mu=w d \lambda, w \in L^{\infty}(K), \text { ess inf } w>0 \text { on } K\right\}
$$

(λ means the Lebesgue measure on K). For $\mu \in W$, the $L^{1}(\mu)$-norm is defined by

$$
\|f\|_{\mu}=\int_{K}|f| d \mu \quad(f \in C(K))
$$

Let $C_{1}(K, \mu)$ denote the linear space $C(K)$ endowed with norm $\|\cdot\|_{\mu}$. We say that U is a unicity space for $C_{1}(K, \mu), \mu \in W$, if to each $f \in C(K)$ there exists a unique best approximation from U in the norm $\|\cdot\|_{\mu}$.

We need some notations as follows. Let for any $g \in C(K)$ and any subset V of $C(K)$,

$$
\begin{aligned}
& Z(g)=\{x \in K: g(x)=0\} \\
& Z(V)=\{x \in K: v(x)=0 \text { for all } v \in V\}, \\
& \operatorname{supp} V=K \backslash Z(V) .
\end{aligned}
$$

Let us now define Property A (cf. [4, p. 98] for its history).

Definition 1. We say that U satisfies Property A if to each nonzero $u \in U$ and $u^{*} \in C(K)$ such that $\left|u^{*}\right|=|u|$ on K there exists a $\tilde{u} \in U \backslash\{0\}$ for which
(1) $\tilde{u}=0$ a.e. on $Z(u)$ (with respect to λ),
(2) $\tilde{u} u^{*} \geqslant 0$ on K.

Property A is closely related to the problem of existence of unicity spaces for $C_{1}(K, \mu)$. In fact, it gives a characterization of such subspaces with respect to every $\mu \in W$.

Theorem 1 (See Pinkus [4, p. 58]). A finite-dimensional subspace U of $C(K)$ is a unicity space for $C_{1}(K, \mu)$ for all $\mu \in W$ if and only if U satisfies Property A .

It should be noted that this result holds for a bigger class of 'admissible' measures which are absolutely continuous with respect to λ.

Various consequences of Property A which, in particular, are very helpful for our periodic problem were obtained. To describe them we need some definitions.

Definition 2. Let $D \subset K, D$ (relatively) open. Then $[D]$ will denote the number (possibly infinite but necessarily countable) of open connected components of D.

Definition 3. We say that U decomposes if there exist subspaces V and \tilde{V} of U with $\operatorname{dim} V \geqslant 1, \operatorname{dim} \tilde{V} \geqslant 1$ such that
(1) $U=V \oplus \tilde{V}$, i.e., $U=V+\tilde{V}$ and $V \cap \tilde{V}=\{0\}$,
(2) supp $V \cap \operatorname{supp} \tilde{V}=\emptyset$.

To simplify the notations we also define:
Definition 4. For $u \in U$, set

$$
U(u)=\{v: v \in U, v=0 \text { a.e. on } Z(u)\} .
$$

The following consequences of Property A due to Pinkus and Wajnryb are very important to our investigations.

Theorem 2 (See Pinkus [4, Theorems 4.6, 4.12]). Suppose that U satisfies Property A. Then
(1) $[K \backslash Z(u)] \leqslant \operatorname{dim} U(u)$ for every $u \in U$, and
(2) U decomposes, if $[K \backslash Z(U)] \geqslant 2$.

Remark 1. (1) It is easily seen that if U decomposes by subspaces V and \tilde{V}, then U satisfies Property A if and only if both V and \tilde{V} satisfy Property A [4, p. 70].
(2) In particular, Pinkus showed that if $K \subset \mathbb{R}$, the first statement of Theorem 2 is both necessary and sufficient for U to satisfy Property A [4, p. 75].
(3) For the case when $K \subset \mathbb{R}$, Pinkus gave an interesting classification of all finitedimensional subspaces U of $C(K)$ which satisfy Property A. As a result, such a space has to have a 'spline-like' structure [4, p. 75]. A slightly simplified characterization of such spaces on $K=[a, b]$ was obtained by Li [2].

3. $L^{1}(\boldsymbol{\mu})$-approximation by subspaces of periodic functions

Assume now that U and W will denote an n-dimensional subspace of C_{b-a} and the set of weighted measures on $K=[a, b]$ defined in Section 2, respectively.

We say that U is a periodic unicity space for $C_{1}([a, b], \mu), \mu \in W$, if to each $f \in C_{b-a}$ there exists a unique best approximation from U on $[a, b]$ in the norm $\|\cdot\|_{\mu}$.

Since every function in C_{b-a} is defined on \mathbb{R} and has period $b-a$, our approximation problem can be 'shifted' to any interval $[\alpha, \beta]$ with $\beta-\alpha=b-a$ by extending every measure $\mu \in W$, i.e., $d \mu=w d \lambda$, to a 'periodic' measure $\tilde{\mu}$ such that

$$
d \tilde{\mu}=\tilde{w} d \lambda
$$

and

$$
\tilde{w}(x)= \begin{cases}w(x) & \text { if } x \in[a, b] \\ w(x+(b-a)) & \text { otherwise }\end{cases}
$$

This implies that if $f \in C_{b-a}$,

$$
\min _{u \in U} \int_{a}^{b}|f-u| d \mu=\min _{u \in U} \int_{\alpha}^{\beta}|f-u| d \tilde{\mu}
$$

Moreover, to apply some of the statements of the nonperiodic case in Section 2, we consider our periodic approximation problem as a nonperiodic problem on $C(S)$ where S denotes the unit sphere in \mathbb{R}^{2}. In fact, both problems are actually the same, because every halfopen interval $[a, b)$ is homeomorphic to S, for instance by the mapping $\varphi:[a, b) \rightarrow S$ defined by

$$
\varphi((1-t) a+t b)=(\cos 2 \pi t, \sin 2 \pi t), \quad t \in[0,1)
$$

In particular, φ defines a counterclockwise order on S setting $\varphi(c)<\varphi(d)$ if $a \leqslant c<d<b$. Thus, to simplify the following arguments, we identify (if necessary) the function $f \in C_{b-a}$ and the subspace U of C_{b-a} with a function and a subspace of $C(S)$, again denoted by f and U, respectively. It should be noted that for $\mu \in W$ the $L^{1}(\mu)$-norm of $f \in C_{b-a}$, taken over $[a, b]$ and S, respectively, differs only by a constant factor independently of f.

Although for the compact set $K=S \subset \mathbb{R}^{2}$ the additional assumption that $K=$ $\overline{\text { int } K}$ does not hold (in the topology of \mathbb{R}^{2}), some of the statements in Section 2 remain valid. In fact, the following statements still hold.

Theorem 3. A finite-dimensional subspace U of C_{b-a} is a periodic unicity space for $C_{1}([a, b], \mu)$ for all $\mu \in W$ if and only if U (as a subspace of $\left.C(S)\right)$ satisfies Property A on S.

Proof. Following the lines of the proof of Theorem 1 it turns out that the arguments are also true in the case when $U \subset C(S)$. Thus the statement follows immediately from Theorem 1.

Remark 2. (1) To make clearer the difference between the statements that U satisfies Property A on $[a, b]$ (which corresponds to the nonperiodic case) and Property A on S (U considered as subspace of $C(S)$), respectively, we give the following definition: We say that the subspace U of C_{b-a} satisfies Property $\mathrm{A}_{\text {per }}$ if to each nonzero $u \in U$ and $u^{*} \in C_{b-a}$ such that $\left|u^{*}\right|=|u|$ on $[a, b]$ there exists a $\tilde{u} \in U \backslash\{0\}$ for which
(1) $\tilde{u}=0$ a.e. on $Z(u)$,
(2) $\tilde{u} u^{*} \geqslant 0$ on $[a, b]$.

Thus, U satisfies Property A on S if and only if U satisfies Property $\mathrm{A}_{\text {per }}$.
(2) It is easily seen that if U satisfies Property $\mathrm{A}_{\text {per }}$, then $U(u)$ satisfies Property $\mathrm{A}_{\text {per }}$ for every $u \in U$.

Theorem 4. Suppose that U satisfies Property $\mathrm{A}_{\mathrm{per}}$. Then
(1) $[S \backslash Z(u)] \leqslant \operatorname{dim} U(u)$ for every $u \in U$, and
(2) U decomposes, if $[S \backslash Z(U)] \geqslant 2$.

Proof. Identify again U with a subspace of $C(S)$. Then $U(u)$ corresponds to a subspace of $C(S)$ for every $u \in U$, and $Z(u), Z(U)$ correspond to subsets of S. Now following the lines of the proof of Theorem 2 it turns out that the same arguments can be applied to the case when $U \subset C(S)$. Thus the statement follows from Theorem 2.

Remark 3. (1) Of course, Property $\mathrm{A}_{\text {per }}$ is weaker than Property A on $K=[a, b]$. For instance, let $K=[0,1]$ and let $U=\operatorname{span}\left\{u_{1}, u_{2}\right\} \subset C_{1-0}$ where $u_{1}(x)=1$ and $u_{2}(x)=$ $\left(x-\frac{1}{4}\right)\left(x-\frac{3}{4}\right), x \in[0,1]$. Then it follows that $\left[K \backslash Z\left(u_{2}\right)\right]=3$ which, in view of Theorem 2, implies that U does not satisfy Property A on $[0,1]$.

But, considering u_{2} as a function on S, it obviously follows that $\left[S \backslash Z\left(u_{2}\right)\right]=2=$ $\operatorname{dim} U\left(u_{2}\right)=\operatorname{dim} U$. In fact, we can show that U satisfies Property $\mathrm{A}_{\text {per }}$. Suppose that $u=c_{1} u_{1}+c_{2} u_{2} \in U \backslash\{0\}$. Let $u^{*} \in C_{1-0}$ with $\left|u^{*}\right|=|u|$. Assume first that u has no sign change on $(0,1)$. Then u^{*} has no sign chance on $(0,1)$ and $\varepsilon u u^{*} \geqslant 0$ on $[0,1]$ for some $\varepsilon \in\{-1,1\}$. Assume now that u has a sign change $\tilde{x} \in(0,1)$. Then by definition of u_{1} and $u_{2}, Z(u)=\{\tilde{x}, 1-\tilde{x}\}$. This implies that either $\varepsilon u^{*} \geqslant 0$ or $\varepsilon u^{*}=u$ on $[0,1]$ for some $\varepsilon \in\{-1,1\}$ (recall that $u^{*}(0)=u^{*}(1)$). Then in the first case, $\varepsilon u_{1} u^{*} \geqslant 0$ while in the second case, $\varepsilon u u^{*} \geqslant 0$ on $[0,1]$.

Thus it follows from Theorems 3 and 1, respectively, that for every $f \in C_{1-0}$ and each $\mu \in W$ there exists a unique best $L^{1}(\mu)$-approximation from U, and there must exist $\tilde{f} \in C[0,1]$ and $\tilde{\mu} \in W$ such that \tilde{f} fails to have a unique best $L^{1}(\tilde{\mu})$-approximation from U.
(2) To obtain the same number of connected components of $S \backslash Z(u)$ and $[a, b] \backslash Z(u)$, respectively, we use the periodic properties: Let $u \in U \subset C_{b-a}$ and assume first that $Z(u)=\emptyset$. Then obviously, $[S \backslash Z(u)]=[K \backslash Z(u)]=1$ where $K=[a, b]$. Assume now that $Z(u) \neq \emptyset$. Let $\tilde{x} \in Z(u)$ and consider u on $\tilde{K}=[\tilde{x}, \tilde{x}+b-a]$. Since $u \in C_{b-a}$, we have $u(\tilde{x}+b-a)=0$. This implies that

$$
[S \backslash Z(u)]=[\tilde{K} \backslash Z(u)]
$$

Thus, statement (1) of Theorem 4 is also satisfied replacing S by an interval \tilde{K} which depends on u.

4. Characterization of Property $\mathbf{A}_{\text {per }}$

In the nonperiodic case the inequality

$$
\begin{equation*}
[K \backslash Z(u)] \leqslant \operatorname{dim} U(u) \tag{4.1}
\end{equation*}
$$

for every $u \in U$ is both necessary and sufficient for U to satisfy Property A if $K \subset \mathbb{R}$ (see Remark 1). The sufficiency is not true for periodic approximation in general as the following example will show.

Example 1. Let $K=[0,1]$ and assume that $U=\operatorname{span}\left\{u_{1}, u_{2}\right\} \subset C_{1-0}$ where $u_{1}(x)=$ $\left(x-\frac{1}{4}\right)\left(x-\frac{3}{4}\right)$ and $u_{2}(x)=x\left(x-\frac{1}{2}\right)(x-1), x \in[0,1]$. Let $u=c_{1} u_{1}+c_{2} u_{2} \in U$. We first show that $[S \backslash Z(u)] \leqslant 2$. This is obviously true if $c_{1}=0$ or $c_{2}=0$. Therefore, assume that $c_{i} \neq 0, i=1,2$. Without loss of generality, let $c_{1}=1$ and $c_{2}<0$. This implies that $u(1)=u_{1}(1)>0$. Since u coincides on $[0,1]$ with the polynomial

$$
p(x)=\left(x-\frac{1}{4}\right)\left(x-\frac{3}{4}\right)+c_{2} x\left(x-\frac{1}{2}\right)(x-1), \quad x \in \mathbb{R}
$$

and $\lim _{x \rightarrow \infty} p(x)=-\infty$, it follows that p has a zero in $(1, \infty)$. Thus, u can have at most two zeros in $[0,1]$ (in fact, it has two) and, therefore,

$$
[S \backslash Z(u)] \leqslant 2
$$

We now show that U fails to satisfy Property $\mathrm{A}_{\text {per }}$. On the contrary assume that U has this property. Then, since $u^{*}=\left|u_{2}\right| \in C_{1-0}$, there must exist a $\tilde{u} \in U$ with $u^{*} \tilde{u} \geqslant 0$, i.e., $\tilde{u} \geqslant 0$ on $[0,1]$. Let $\tilde{u}=c_{1} u_{1}+c_{2} u_{2}$. Then $c_{1} \neq 0$, because u_{2} changes the sign on $(0,1)$, and it follows that $\operatorname{sign} \tilde{u}(0)=\operatorname{sign} c_{1}$ and $\operatorname{sign} \tilde{u}\left(\frac{1}{2}\right)=-\operatorname{sign} c_{1}$, a contradiction.

This shows that statement (4.1) fails to be a sufficient condition for Property $\mathrm{A}_{\text {per }}$ in general.

We now characterize all U in C_{b-a} which satisfy Property $\mathrm{A}_{\text {per }}$. On the basis of Theorem 4 we only have to treat the cases $Z(U)=\emptyset, Z(U)=\{a, b\}$ and $Z(U)=$ $\{\tilde{x}\}$ for some $\tilde{x} \in(a, b)$, respectively. Since we identify U with a subspace of $C(S)$, and, therefore, the points a and b correspond to a single point on S, the cases $Z(U)=\{a, b\}$ and $Z(U)=\{\tilde{x}\}$ for some $\tilde{x} \in(a, b)$ can be actually treated in the same way.

Case 1: Assume that $Z(U)=\{\tilde{x}\}$ for some $\tilde{x} \in(a, b)$. Since $u(\tilde{x})=0$ for every $u \in U$, we consider U as a subspace of periodic functions on $K=[\tilde{x}, \tilde{x}+b-a]$. Assume that U satisfies Property $\mathrm{A}_{\text {per }}$. It is then easily seen that U even satisfies Property A on K, i.e., the more general nonperiodic case is given. Indeed, let $u \in U \backslash\{0\}$ and $u^{*} \in C(K)$ such that $\left|u^{*}\right|=|u|$ on K. Since $u(\tilde{x})=u(\tilde{x}+b-a)=0$, it follows that $u^{*}(\tilde{x})=u^{*}(\tilde{x}+b-a)=0$. Hence, u^{*} can be continuously extended to a periodic function on \mathbb{R} with period $b-a$, i.e., $u^{*} \in C_{b-a}$. Then, since U satisfies Property $\mathrm{A}_{\text {per }}$, there exists a $\tilde{u} \in U \backslash\{0\}$ for which $\tilde{u}=0$ a.e. on $Z(u)$ and $\tilde{u} u^{*} \geqslant 0$ on K.

Thus we have shown that U (as a subspace of $C(K)$) satisfies Property A on K.

But for this case, Pinkus [4, Theorem 4.16] and Li [2] totally classified all $U \subset C(K)$ which satisfy Property A. In particular, they showed that such a subspace U has to have a spline-like structure.

Thus, there still remain the case where $Z(U)=\emptyset$.
Case 2: Assume that $Z(U)=\emptyset$. This is the actually interesting case of our periodic approximation problem. We are able to characterize all subspaces U of C_{b-a} which satisfy Property $\mathrm{A}_{\text {per }}$.

Before stating the main result, we give the following definition.
Definition 5. We say that $[c, d] \subset \mathbb{R}$ is a zero interval of $u \in C_{b-a}$ if $u=0$ on $[c, d]$, and u does not vanish identically on $(c-\varepsilon, c)$ and on $(d, d+\varepsilon)$ for any $\varepsilon>0$.

Moreover, we say that zeros $\left\{x_{i}\right\}_{i=1}^{k} \subset \mathbb{R}$ of $u \in C_{b-a}$ such that $x_{1}<\cdots<x_{k}$ are separated zeros of u if there exist $\left\{y_{i}\right\}_{i=1}^{k-1}$ satisfying $y_{i} \in\left(x_{i}, x_{i+1}\right), i=1, \ldots, k-1$, for which $u\left(y_{i}\right) \neq 0$.

Theorem 5. Assume that U is an n-dimensional subspace of C_{b-a} satisfying $Z(U)=\emptyset$. The following statements (1) and (2) are equivalent.
(1) U satisfies Property $\mathrm{A}_{\text {per }}$.
(2) (a) $[S \backslash Z(u)] \leqslant \operatorname{dim} U(u)=d(u)$ for every $u \in U$.
(b) For every nonzero $u \in U$ and every set $\left\{x_{i}\right\}_{i=1}^{m+1}$ of separated zeros of u satisfying

$$
a \leqslant x_{1}<\cdots<x_{m} \leqslant b \leqslant x_{m+1}=x_{1}+b-a
$$

and $x_{m}-x_{1}<b-a$ where $1 \leqslant m \leqslant d(u)$ there exists a $\tilde{u} \in U(u) \backslash\{0\}$ such that

$$
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=1, \ldots, m .
$$

Remark 4. (1) Before proving the theorem, we want to point out that statement (2)(b) is closely related to an important subclass of subspaces, the weak Chebyshev spaces. An m-dimensional subspace V of $C[a, b]$ is said to be a weak Chebyshev (WT-) subspace if every $v \in V$ has at most $m-1$ sign changes on $[a, b]$, i.e., there do not exist points $a \leqslant x_{1}<\cdots<x_{m+1} \leqslant b$ such that

$$
v\left(x_{i}\right) v\left(x_{i+1}\right)<0, \quad i=1, \ldots, m
$$

The relationship of statement (2)(b) to WT-spaces is based on the following result (for details on WT-spaces cf. [4, p. 204]):

If V is an m-dimensional WT-subspace of $C[a, b]$ and a set of points is given by

$$
y_{0}=a<y_{1}<\cdots<y_{k}<b=y_{k+1}, \quad k \leqslant m-1,
$$

then there exists a $\tilde{v} \in V \backslash\{0\}$ satisfying

$$
(-1)^{i} \tilde{v}(x) \geqslant 0, \quad x \in\left[y_{i-1}, y_{i}\right], \quad i=1, \ldots, k+1
$$

(2) Another relationship to properties of WT-spaces is given by the following fact:

If $U \subset C_{b-a}$ satisfies Property $\mathrm{A}_{\text {per }}$, and for $u \in U,[c, d]$ is a zero interval of u with $a \leqslant c<d \leqslant b$, then $U(u)$ satisfies Property $\mathrm{A}_{\text {per }}$ (Remark 2). Moreover, it follows that $U(u)$ is a WT-subspace on $I_{c}=[c, c+b-a]$. Indeed, suppose there exists a $\tilde{u} \in U(u) \backslash\{0\}$ with at least $d(u)$ sign changes on I_{c}. This implies that $\left[I_{c} \backslash Z(\tilde{u})\right] \geqslant d(u)+$ 1, while in view of Theorem 4,

$$
\left[I_{c} \backslash Z(\tilde{u})\right] \leqslant \operatorname{dim} U(\tilde{u}) \leqslant d(u)
$$

a contradiction (recall that $\tilde{u}(c)=\tilde{u}(c+b-a)=0)$.
In addition, it follows that Case 1 is given, because $c \in Z(U(u))$. Hence applying the classification results of the nonperiodic case, a characterization of $U(u)$ by a spline-like structure is obtained (see Case 1 above).

Proof of Theorem 5. (1) $\Rightarrow(2)(a)$. This is a consequence of Theorem 4.
$(1) \Rightarrow(2)(b)$. Let $u \in U \backslash\{0\}$ and let for some $m \in\{1, \ldots, d(u)\}$ a set $\left\{x_{i}\right\}_{i=1}^{m+1}$ of separated zeros of u be given satisfying

$$
a \leqslant x_{1}<x_{2}<\cdots<x_{m} \leqslant b \leqslant x_{m+1}=x_{1}+b-a
$$

and $x_{m}-x_{1}<b-a$. In particular, $x_{m+1}>x_{m}$, because $x_{m+1}-x_{1}=b-a$. Set $t_{i}=x_{i}$, $i=1, \ldots, m$ and complete this set by points $t_{m}<t_{m+1}<\cdots<t_{d(u)}<x_{m+1}$ to a set of $d(u)$ points. Let $\left\{v_{1}, \ldots, v_{d(u)}\right\}$ form a basis of $U(u)$. We distinguish.

Assume first that $\operatorname{det}\left(v_{i}\left(t_{j}\right)\right)_{i, j=1}^{d(u)} \neq 0$. Then $m<d(u)$, because $u \in U(u)$ and $u\left(t_{i}\right)=0, i=1, \ldots, m$. Hence there exists a $\hat{u} \in U(u)$ satisfying $\hat{u}\left(t_{i}\right)=0, i=$ $1, \ldots, d(u)-1$, and $\hat{u}\left(t_{d(u)}\right)=1$. In particular, $\hat{u}\left(x_{m+1}\right)=0$. Then there exists a $u^{*} \in C_{b-a}$ such that

$$
u^{*}(x)= \begin{cases}(-1)^{i}|\hat{u}(x)| & \text { if } x \in\left[t_{i}, t_{i+1}\right], i=1, \ldots, m-1, \\ (-1)^{m}|\hat{u}(x)| & \text { if } x \in\left[t_{m}, x_{m+1}\right] .\end{cases}
$$

Hence it follows that $\left|u^{*}\right|=|\hat{u}|$. Since U satisfies Property $\mathrm{A}_{\text {per }}$, there exists a $\tilde{u} \in U(\hat{u}) \backslash\{0\} \subset U(u) \backslash\{0\}$ satisfying

$$
\tilde{u} u^{*} \geqslant 0 \quad \text { on } S
$$

This implies that

$$
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=1, \ldots, m
$$

If $\operatorname{det}\left(v_{i}\left(t_{j}\right)\right)_{i, j=1}^{d(u)}=0$, there exists a non-zero $\hat{u} \in U(u)$ satisfying $\hat{u}\left(t_{i}\right)=0, i=$ $1, \ldots, d(u)$. Then concluding analogously as above we obtain the desired statement.
(2) $\Rightarrow(1)$: Let $u^{*} \in U \backslash\{0\}$ and assume that $S \backslash Z\left(u^{*}\right)=\bigcup_{i=1}^{l} A_{i}$, the union of the connected components. To show Property $\mathrm{A}_{\text {per }}$ we must prove that for any choice of $\varepsilon_{i} \in\{-1,1\}, i=1, \ldots, l$ there exists a $\tilde{u} \in U\left(u^{*}\right) \backslash\{0\}$ such that $\varepsilon_{i} \tilde{u} \geqslant 0$ on $A_{i}, i=1, \ldots, l$.

Let any set $\left\{\varepsilon_{1}, \ldots, \varepsilon_{l}\right\}$ of signs be given. It first follows from (2)(a) that $l \leqslant \operatorname{dim} U\left(u^{*}\right)=d\left(u^{*}\right)$. If $Z\left(u^{*}\right)=\emptyset$, then $l=1$ and setting $\tilde{u}=\varepsilon_{1}\left|u^{*}\right| \in U\left(u^{*}\right) \backslash\{0\}$, the statement follows. Therefore, assume that $Z\left(u^{*}\right) \neq \emptyset$. Then, there must exist a set $\left\{x_{i}\right\}_{i=1}^{m+1}$ of separated zeros of u^{*} satisfying

$$
a \leqslant x_{1}<x_{2}<\cdots<x_{m} \leqslant b \leqslant x_{m+1}=x_{1}+b-a
$$

and

$$
\begin{aligned}
& \bigcup_{i=1}^{i_{1}} A_{i} \subset\left(x_{1}, x_{2}\right) \quad \text { if } \varepsilon_{1}=\cdots=\varepsilon_{i_{1}} \\
& \bigcup_{i=i_{1}+1}^{i_{2}} A_{i} \subset\left(x_{2}, x_{3}\right) \quad \text { if } \varepsilon_{i_{1}+1}=-\varepsilon_{i_{1}}, \varepsilon_{i_{1}+1}=\cdots=\varepsilon_{i_{2}} \\
& \vdots \\
& \bigcup_{i=i_{m-1}+1}^{i_{m}} A_{i} \subset\left(x_{m}, x_{m+1}\right) \quad \text { if } \varepsilon_{i_{m-1}+1}=-\varepsilon_{i_{m-1}}, \varepsilon_{i_{m-1}+1}=\cdots=\varepsilon_{i_{m}}=\varepsilon_{l}
\end{aligned}
$$

Of course, $1 \leqslant m \leqslant l \leqslant d\left(u^{*}\right)$ and $x_{m}<x_{m+1}$ which implies that $x_{m}-x_{1}<b-a$. Then by hypothesis, we obtain a $\tilde{u} \in U\left(u^{*}\right) \backslash\{0\}$ satisfying

$$
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=1, \ldots, m
$$

Assume, without loss of generality, that $\varepsilon_{1}=-1$. Then by the choice of $\left\{x_{i}\right\}_{i=1}^{m+1}$, we have

$$
\varepsilon_{i} \tilde{u} \geqslant 0 \quad \text { on } A_{i} i=1, \ldots, l
$$

This completes the proof of Theorem 5.
Before presenting examples of some nontrivial classes of subspaces which satisfy Property $\mathrm{A}_{\text {per }}$ we want to point out some differences between the characterizations of Property A in the nonperiodic case due to Pinkus and Li and our characterization of Property $\mathrm{A}_{\text {per }}$. For instance, Li [2] gave the following characterization.

Theorem 6. Let U denote a finite-dimensional subspace of $C[a, b]$ and assume that $Z(U) \cap(a, b)=\emptyset$. Then U satisfies Property A if and only if U satisfies the following conditions:
(1) U is a weak Chebyshev space;
(2) $U([c, d])=U([a, d]) \oplus U([c, b])$ for all $a<c<d<b$, where for any $a \leqslant \alpha \leqslant \beta \leqslant b$,

$$
U([\alpha, \beta])=\{u \in U: u=0 \text { on }[\alpha, \beta]\} .
$$

Remark 5. (1) The second condition implies that every function $u \in U([c, d])$ 'generates' a function v in U such that $v=0$ on $[a, d]$ and $v=u$ on $[d, b]$ (and, analogously, a function \tilde{v} in U such that $\tilde{v}=0$ on $[c, b]$ and $\tilde{v}=u$ on $[a, c]$). This property is not true in the periodic case in general: For instance, let $K=[0,3]$ and assume that $U=\operatorname{span}\left\{u_{1}, u_{2}\right\} \subset C_{3-0}$ where $u_{1}(x)=1$ and

$$
u_{2}(x)= \begin{cases}1-x & \text { if } 0 \leqslant x \leqslant 1 \\ 0 & \text { if } 1<x<2 \\ x-2 & \text { if } 2 \leqslant x \leqslant 3\end{cases}
$$

Then U satisfies Property $\mathrm{A}_{\text {per }}$, because U is a space of piecewise polynomials on K with the knots $x_{i}=i, i=0,1,2,3$ (see Example 3). But, U fails to satisfy statement (2) of Theorem 6, since $U([1,2])=\operatorname{span}\left\{u_{2}\right\}$ and $U([0,2])=\{0\}, U([1,3])=\{0\}$.
(2) The above example fails to be a weak Chebyshev space, because $u_{2}-\frac{1}{2} u_{1}$ has two sign changes in $(0,3)$. Hence statement (1) of Theorem 6 is also not true in the periodic case in general.

Example 2 (Trigonometric polynomials). Let $K=[0,2 \pi]$ and assume that U denotes the $(2 n+1)$-dimensional subspace of all trigonometric polynomials u of order n, i.e.,

$$
u(x)=a_{0}+\sum_{j=1}^{n}\left(a_{j} \cos j x+b_{j} \sin j x\right), \quad x \in[0,2 \pi]
$$

It is well-known that U is a Haar system on $[0,2 \pi)$, i.e., every nonzero $u \in U$ has at most $2 n$ zeros in $[0,2 \pi)$. Hence $U(u)=U$ for every nonzero $u \in U$ and $[K \backslash Z(u)] \leqslant 2 n+1=\operatorname{dim} U$ which implies, in view of Remark 1, that U satisfies Property A on K. Then in particular, U satisfies Property $\mathrm{A}_{\text {per }}$.

Example 3 (Piecing together Haar systems). Let $a=e_{0}<e_{1}<\cdots<e_{k+1}=b$. On each interval $I_{i}=\left[e_{i-1}, e_{i}\right]$, let U_{i} be a Haar system of real-valued continuous functions with dimension $n_{i} \geqslant 1, i=1, \ldots, k+1$. For convenience, we especially assume that $n_{1} \geqslant 2$ and $n_{k+1} \geqslant 2$. V will denote the subspace of $C[a, b]$ defined by

$$
V=\left\{v \in C[a, b]:\left.v\right|_{I_{i}} \in U_{i}, i=1, \ldots, k+1\right\} .
$$

It is well-known (cf. [4, p. 80]) that $\operatorname{dim} V=\sum_{i=1}^{k+1} n_{i}-k$ and V is a WT-system on $[a, b]$. Moreover, V satisfies Property A on $[a, b]$.

To investigate its periodic analogue we consider the subspace U of C_{b-a} defined by

$$
\begin{equation*}
U=\left\{u \in C_{b-a}:\left.u\right|_{I_{i}} \in U_{i}, i=1, \ldots, k+1\right\} . \tag{4.2}
\end{equation*}
$$

Thus, U is the space of all periodic extensions of functions $v \in V$ such that $v(a)=$ $v(b)$.

Theorem 7. Let U be the space of periodic functions defined in (4.2). Then U satisfies Property $\mathrm{A}_{\mathrm{per}}$.

To apply Theorem 5 we divide the proof of Theorem 7 into several parts.
Claim 3.1. Let U and V be given as above. Then

$$
\begin{equation*}
\operatorname{dim} U=\operatorname{dim} V-1 \tag{4.3}
\end{equation*}
$$

Proof. Since $n_{1} \geqslant 2$ and $n_{k+1} \geqslant 2$, by the Haar condition of U_{1} and U_{k+1}, respectively, there exists a $v \in V$ such that $v(a)=1, v\left(e_{1}\right)=0, v=0$ on $\left(e_{1}, e_{k}\right)$, and $v\left(e_{k}\right)=0$, $v(b)=-1$. Hence v cannot periodically extended to a function in U which implies that

$$
\operatorname{dim} U<\operatorname{dim} V
$$

To show the statement we set $\operatorname{dim} V=n+1(n \geqslant 0)$ and suppose that $\left\{v_{1}, \ldots, v_{n+1}\right\}$ forms a basis of V such that

$$
v_{1}>0 \text { on }[a, b], v_{i}(a)=0, \quad i=2, \ldots, n+1
$$

(Recall that each U_{i} is a Haar system on I_{i} which implies that there exists a positive function in U_{i}.)

We show that $v_{i}(b) \neq 0$ for some $i \in\{2, \ldots, n+1\}$. On the contrary, assume that $v_{i}(b)=0, i=2, \ldots, n+1$. Let $u \in V$ such that $u(a)=1, u\left(e_{1}\right)=0, u=0$ on $\left(e_{1}, e_{k}\right)$, and $u\left(e_{k}\right)=0, u(b)=1$ (u can be found analogously as the function v above using the Haar condition of U_{1} and U_{k+1}, respectively). Hence it follows that $\left\{u, v_{2}, \ldots, v_{n+1}\right\}$ are linearly independent and can be periodically extended to functions in U. This implies $\operatorname{dim} U \geqslant n+1=\operatorname{dim} V$, a contradiction. Thus it follows that $v_{l}(b) \neq 0$ for some $l \in\{2, \ldots, n+1\}$. Consider the n linearly independent functions in V,

$$
\tilde{v_{1}}=v_{1}+\frac{v_{1}(a)-v_{1}(b)}{v_{l}(b)} v_{l}, \quad \tilde{v_{i}}=v_{i}-\frac{v_{i}(b)}{v_{l}(b)} v_{l}, \quad i=2, \ldots, n+1, \quad i \neq l .
$$

Then we obtain that

$$
0 \neq \tilde{v_{1}}(a)=v_{1}(a)=\tilde{v_{1}}(b), \quad \tilde{v_{i}}(a)=\tilde{v_{i}}(b)=0, \quad i=2, \ldots, n+1, \quad i \neq l
$$

which implies that $\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{l-1}, \tilde{v}_{l+1}, \ldots, \tilde{v}_{n+1}\right\}$ can be periodically extended to functions in U. Thus,

$$
n \leqslant \operatorname{dim} U<\operatorname{dim} V=n+1
$$

and it follows that $\operatorname{dim} U=n=\operatorname{dim} V-1$.

Claim 3.2. $Z(U)=\emptyset$.
Proof. Since each U_{i} is a Haar system on I_{i}, there exists a positive function in U_{i}, $i=1, \ldots, k+1$. Then piecing together such functions we obtain a continuous and positive function \tilde{v} on $\left[a, e_{k}\right]$ such that $\left.\tilde{v}\right|_{I_{i}} \in U_{i}, i=1, \ldots, k$. Since U_{k+1} is a Haar system on I_{k+1} and $n_{k+1} \geqslant 2$, by interpolation we construct a function $\hat{v} \in U_{k+1}$ such that $\hat{v}\left(e_{k}\right)=\tilde{v}\left(e_{k}\right)$ and $\hat{v}(b)=\tilde{v}(a)$. Piecing together \hat{v} and \tilde{v} we then obtain a function $\tilde{u} \in U$ such that $\tilde{u}>0$ on $\left[a, e_{k}\right]$. This implies that $\left[a, e_{k}\right] \cap Z(U)=\emptyset$. Analogously, we find a function $\hat{u} \in U$ such that $\hat{u}>0$ on $\left[e_{1}, b\right]$ which implies that $\left[e_{1}, b\right] \cap Z(U)=\emptyset$.

Thus the statement is proved.
Claim 3.3. Let $u \in U$ and assume that $\tilde{u} \in V$ such that $\tilde{u}=\left.u\right|_{[a, b]}$. Then we obtain

$$
d(u)=\operatorname{dim} U(u)= \begin{cases}\operatorname{dim} V(\tilde{u}) & \text { if } I_{1} \cup I_{k+1} \subset Z(u) \tag{4.4}\\ \operatorname{dim} V(\tilde{u})-1 & \text { otherwise }\end{cases}
$$

Proof. It is obvious that $d(u)=\operatorname{dim} U(u) \leqslant \operatorname{dim} V(\tilde{u})$. Assume first that $I_{1} \cup I_{k+1} \subset Z(u)$. Then, if $v \in V(\tilde{u})$, it follows that $v=0$ on $I_{1} \cup I_{k+1}$. Hence v has a periodic extension in $U(u)$ which implies that $\operatorname{dim} V(\tilde{u}) \leqslant d(u)$.

Assume now, without loss of generality, that u does not vanish identically on I_{k+1}. Using the Haar condition of U_{k+1} we find a $v \in V$ such that

$$
v=0 \text { on } \quad\left[a, e_{k}\right], \quad v(b)=1
$$

Since I_{k+1} fails to be a subset of $Z(\tilde{u})$, it follows that $v \in V(\tilde{u})$. But, since v has no periodic extension in U, we obtain that

$$
d(u)<\operatorname{dim} V(\tilde{u})
$$

Arguing similarly as in the proof of (4.3), we can then show that

$$
d(u)=\operatorname{dim} V(\tilde{u})-1
$$

Claim 3.4. Let $u \in U$. Then

$$
\begin{equation*}
[S \backslash Z(u)] \leqslant d(u) \tag{4.5}
\end{equation*}
$$

Proof. Set $\tilde{u}=\left.u\right|_{[a, b]}$. Then $\tilde{u} \in V$. Since V satisfies Property A, following Theorem 2 and Remark 1 we obtain that

$$
[[a, b] \backslash Z(\tilde{u})] \leqslant \operatorname{dim} V(\tilde{u}) .
$$

This implies that if $u(a)=u(b) \neq 0$,

$$
[S \backslash Z(u)] \leqslant \operatorname{dim} V(\tilde{u})-1,
$$

because the first and the last component of $[a, b] \backslash Z(\tilde{u})$ reduce to one connected component of $S \backslash Z(u)$. Hence in view of (4.4), the statement follows. Moreover, the statement also follows, if $\operatorname{dim} V(\tilde{u})=d(u)$.

Thus we have still to consider the case when $u(a)=u(b)=0$ and $d(u)=$ $\operatorname{dim} V(\tilde{u})-1$. In view of (4.4), let us assume that I_{k+1} fails to be a subset of $Z(\tilde{u})$. Moreover, suppose that

$$
[[a, b] \backslash Z(\tilde{u})]=\operatorname{dim} V(\tilde{u})=d(u)+1 .
$$

Since \tilde{u} does not vanish identically on I_{k+1} and $\tilde{u}(b)=0$, it has exactly $0 \leqslant r \leqslant n_{k+1}-$ 2 zeros $e_{k} \leqslant z_{1}<\cdots<z_{r}<b$ there (recall that U_{k+1} is a Haar system on I_{k+1}). Assume that $\tilde{u}>0$ on $(b-\varepsilon, b)$ for some $\varepsilon>0$. Interpolating by U_{k+1} on I_{k+1} we obtain a function $\tilde{v} \in V$ such that

$$
\tilde{v}=0 \text { on }\left[a, e_{k}\right], \quad \tilde{v}\left(z_{i}\right)=0, \quad i=1, \ldots, r, \quad \tilde{v}(b)=1
$$

Then for some sufficiently small $c>0$, the function $\tilde{u}-c \tilde{v} \in V$ has a sign change on $(b-\varepsilon, b)$ which implies that

$$
[[a, b] \backslash Z(\tilde{u}-c \tilde{v})] \geqslant \operatorname{dim} V(\tilde{u})+1 .
$$

Moreover, since $\tilde{v}=0$ on $\left[a, e_{k}\right]$ and $\tilde{u}-c \tilde{v}$ does not vanish identically on I_{k+1}, we obviously obtain that

$$
V(\tilde{u}-c \tilde{v})=V(\tilde{u}) .
$$

Thus it follows that

$$
[[a, b] \backslash Z(\tilde{u}-c \tilde{v})] \geqslant \operatorname{dim} V(\tilde{u}-c \tilde{v})+1,
$$

in contradiction to Property A of V.
Thus, we have shown that in the case when $u(a)=u(b)=0$ and $d(u)=$ $\operatorname{dim} V(\tilde{u})-1$,

$$
[S \backslash Z(u)]=[[a, b] \backslash Z(\tilde{u})] \leqslant \operatorname{dim} V(\tilde{u})-1=d(u) .
$$

Claim 3.5. U is a WT-system on $[a, b]$, if $n(=\operatorname{dim} U)$ is odd.
Proof. Assume that there exists a $\hat{u} \in U$ such that \hat{u} has at least n sign changes in (a, b). If $\hat{u}(a)=\hat{u}(b)=0$, then

$$
[[a, b] \backslash Z(\hat{u})]=[S \backslash Z(\hat{u})] \geqslant n+1 \geqslant d(\hat{u})+1,
$$

which contradicts (4.5). Hence, $\hat{u}(a)=\hat{u}(b) \neq 0$. But then, in view of the fact that n is odd, \hat{u} must have at least $n+1$ sign changes in (a, b) which contradicts the property of V to be a WT-system on $[a, b]$.

Claim 3.6. Set

$$
\tilde{U}=\{u \in U: u(a)=0\} .
$$

Then $\operatorname{dim} \tilde{U}=n-1$ and \tilde{U} is a WT-system on $[a, b]$.
Proof. Since there exists a $u \in U$ such that

$$
u(a)=1, \quad u=0 \text { on }\left[e_{1}, e_{k}\right], \quad u(b)=1,
$$

it is easily seen that $\operatorname{dim} \tilde{U}=n-1$. Assume now that there exists a $\tilde{u} \in \tilde{U}$ with at least $n-1$ sign changes in (a, b). Of course, $\tilde{u}(a)=\tilde{u}(b)=0$. Then it follows from (4.5) that $[a, b] \backslash Z(\tilde{u})=\bigcup_{i=1}^{l} A_{i}$ (the union of the connected components) with $l=n$, which implies that \tilde{u} has exactly $n-1$ sign changes. Consider first the case when n is even. Then \tilde{u} has different sign on A_{1} and on A_{l}, respectively. Let $\tilde{v} \in V$ such that $\tilde{v}(a) \tilde{v}(b)<0$ (this function can be found analogously as the function v defined in the proof of (4.3)). Then for some sufficiently small ε the function $\tilde{u}+\varepsilon \tilde{v} \in V$ has at least $n+1$ sign changes in (a, b) which contradicts the property of V to be a WT-system on $[a, b]$.

The case when n is odd can be treated analogously using a function $\tilde{v} \in V$ such that $\tilde{v}(a) \tilde{v}(b)>0$.

Thus it follows that \tilde{U} is a WT-system on $[a, b]$.
Claim 3.7. Let $u \in U \backslash\{0\}$ and let a set $\left\{x_{i}\right\}_{i=1}^{m+1}$ of separated zeros of u be given satisfying

$$
\begin{equation*}
a \leqslant x_{1}<x_{2}<\cdots<x_{m} \leqslant b \leqslant x_{m+1}=x_{1}+b-a \tag{4.6}
\end{equation*}
$$

and $x_{m}-x_{1}<b-a$ where $1 \leqslant m \leqslant d(u)$. Then there exists a $\tilde{u} \in U(u) \backslash\{0\}$ such that

$$
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=1, \ldots, m
$$

Proof. We prove the statement by considering several cases.
Case 3.6.1: Assume that $U(u)=U$. Let a set of separated zeros of u be given by (4.6). Suppose first that $m=n$. Since each $v \in V$ has at most $n_{i}-1$ separated zeros in $I_{i}, i=1, \ldots, k+1$, and $n+1=\operatorname{dim} V=\sum_{i=1}^{k+1} n_{i}-k$, it follows that each $v \in V$ has at most n separated zeros in $[a, b]$. Hence the assumption $m=n$ implies that $Z(u) \cap\left[x_{1}, x_{m+1}\right]=\left\{x_{i}\right\}_{i=1}^{m+1}$ and u has exactly $n_{i}-1$ of its zeros in each $I_{i}, i=$ $1, \ldots, k+1$. Moreover, $e_{1} \notin Z(u)$, because otherwise e_{1} is a common zero of $\left.u\right|_{I_{1}}$ and $\left.u\right|_{I_{2}}$ which implies that u would have at most $\left(n_{1}-1\right)+\left(n_{2}-1\right)-1$ zeros in $I_{1} \cup I_{2}$. Then u could have at most $\sum_{i=1}^{k+1} n_{i}-(k+1)-1=n-1$ zeros in $[a, b]$ contradicting $m=n$. Analogously we obtain that $Z(u) \cap\left\{e_{i}\right\}_{i=1}^{k}=\emptyset$. Then, since each U_{i} is a Haar system on I_{i}, all the zeros of u in (a, b) must be sign changes.

We distinguish: If $x_{m}<b$, then u changes the sign at $\left\{x_{i}\right\}_{i=2}^{m}$ and setting $\tilde{u}=\varepsilon u$ for some $\varepsilon \in\{-1,1\}$ the statement follows.

If $x_{m}=b$, then $x_{1}>a$, because $x_{m}-x_{1}<b-a$. Moreover, $u(a)=0$, since $u\left(x_{m}\right)=$ 0 and $u \in C_{b-a}$. Then u would have $m+1=n+1$ separated zeros $\left\{a, x_{1}, \ldots, x_{m}\right\}$ in $[a, b]$ contradicting the above arguments on V.

Suppose now that $m \leqslant n-1$ and n is even. Set

$$
y_{0}=a, y_{i}=x_{i}, i=1, \ldots, m, y_{m+1}=b \quad \text { if } m \text { is even }
$$

(then, in fact, $m \leqslant n-2$, because n is even), and

$$
y_{0}=a, y_{i}=x_{i+1}, i=1, \ldots, m-1, y_{m}=b \quad \text { if } m \text { is odd. }
$$

In both cases, using the statements on WT-systems given in Remark 4 we find a $\tilde{u} \in \tilde{U} \backslash\{0\}$ (recall that we have shown in Claim 3.6 that \tilde{U} is a WT-system on $[a, b]$) such that

$$
\begin{aligned}
& (-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[y_{i}, y_{i+1}\right], \quad i=0, \ldots, m \quad \text { if } m \text { is even, } \\
& (-1)^{i+1} \tilde{u}(x) \geqslant 0, \quad x \in\left[y_{i}, y_{i+1}\right], \quad i=0, \ldots, m-1 \quad \text { if } m \text { is odd. }
\end{aligned}
$$

(If $x_{1}=a$ or $x_{m}=b$, the inequalities are also true for the degenerate intervals $\left[y_{0}, y_{1}\right]$, $\left[y_{m-1}, y_{m}\right]$ or $\left[y_{m}, y_{m+1}\right]$, respectively, because $\bar{u}(a)=\bar{u}(b)=0$ for every $\bar{u} \in \tilde{U}$.)

Thus in both cases it follows that

$$
(-1)^{m} \tilde{u}(x) \geqslant 0, \quad x \in\left[a, x_{1}\right] \cup\left[x_{m}, b\right],
$$

which corresponds to the sign behavior of \tilde{u} on $\left[x_{m}, x_{m+1}\right]$. Hence \tilde{u} has the desired properties.

Suppose now that n is odd and $m \leqslant n-1$. Then by Claim 3.5, U itself is a WTsystem on $[a, b]$. Replacing the subspace \tilde{U} by U, if necessary, and arguing analogously as above we obtain a function $\tilde{u} \in U \backslash\{0\}$ with the desired properties.

Case 3.6.2: Assume that u has at least two zero intervals $J_{1}=\left[e_{j}, e_{l}\right]$ and $J_{2}=\left[e_{p}, e_{q}\right]$ in $[a, b]$ such that $e_{l}<e_{p}$, and at most finitely many zeros in $\left[e_{l}, e_{p}\right]$. Let $\left\{x_{i}\right\}_{i=1}^{m} \cap\left(e_{l}, e_{p}\right)=\left\{y_{i}\right\}_{i=1}^{r}$ such that $y_{0}=e_{l}<y_{1}<\cdots<y_{r}<e_{p}=y_{r+1}$. Define $\hat{u} \in V$ satisfying $\hat{u}=0$ on $\left[a, e_{l}\right] \cup\left[e_{p}, b\right]$ and $\hat{u}=u$ on $\left(e_{l}, e_{p}\right)$. Since V satisfies Property A, the subspace $V(\hat{u})$ satisfies Property A. To use this property we distinguish several cases:

Consider first the cases when $x_{1} \notin\left(e_{l}, e_{p}\right)$ and $x_{1} \in\left(e_{l}, e_{p}\right), m$ even, respectively (hence $x_{1}=y_{1}$ in the second case). In both cases, by the Property A there exists a $\tilde{u} \in V(\hat{u}) \backslash\{0\}$ such that

$$
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[y_{i}, y_{i+1}\right], \quad i=0, \ldots, r .
$$

Finally assume that $x_{1} \in\left(e_{l}, e_{p}\right)$ and m is odd. Define $\tilde{y_{0}}=e_{l}$ and $\tilde{y_{i}}=y_{i+1}, i=$ $1, \ldots, r$. By the Property A there exists a $\tilde{u} \in V(\hat{u}) \backslash\{0\}$ such that

$$
(-1)^{i+1} \tilde{u}(x) \geqslant 0, \quad x \in\left[\tilde{y}_{i}, \tilde{y}_{i+1}\right], \quad i=0, \ldots, r-1 .
$$

Moreover, in all cases $\tilde{u}(a)=\tilde{u}(b)=0$ which implies that \tilde{u} has a periodic extension in C_{b-a} (again denoted by $\left.\tilde{u}\right)$. Therefore, $\tilde{u} \in U(u)$ and $\varepsilon \tilde{u}$ has the desired properties for some $\varepsilon \in\{-1,1\}$.

Case 3.6.3: Assume that u has a unique zero interval $J=\left[e_{p}, e_{q}\right]$ in $[a, b]$. To derive this case from Case 3.6.2 we generate a subspace \tilde{V} of piecing together Haar systems for a bigger knot sequence as follows:

Let

$$
e_{k+1+i}=e_{i}+b-a, \quad I_{k+1+i}=\left[e_{k+i}, e_{k+1+i}\right]
$$

and

$$
U_{k+1+i}=\left\{u \in C\left(I_{k+1+i}\right): u(x)=\tilde{u}(x-(b-a)), x \in I_{k+1+i}, \text { for some } \tilde{u} \in U_{i}\right\},
$$

$i=1, \ldots, k+1$. We consider the linear space \tilde{V} defined by

$$
\tilde{V}=\left\{v \in C\left[e_{0}, e_{2 k+2}\right]:\left.v\right|_{I_{i}} \in U_{i}, i=1, \ldots, 2 k+2\right\} .
$$

Of course, \tilde{V} has the same properties as V. In particular, it satisfies Property A. Moreover, the given subspace U of C_{b-a} can also be defined by

$$
U=\left\{u \in C_{b-a}:\left.u\right|_{I_{i}} \in U_{i}, i=l, \ldots, l+k\right\}
$$

for any $l \in\{1, \ldots, k+2\}$. We now consider the given function u on $\left[e_{p}, e_{q+k+1}\right]$. Then by hypothesis, $u=0$ on $\left[e_{p}, e_{q}\right] \cup\left[e_{p+k+1}, e_{q+k+1}\right]$ and u has at most finitely many zeros in $\left[e_{q}, e_{p+k+1}\right]$. As in Case 3.6 .2 we define $\hat{u} \in \tilde{V}$ satisfying $\hat{u}=0$ on $\left[e_{0}, e_{q}\right] \cup\left[e_{p+k+1}, e_{2 k+2}\right]$ and $\hat{u}=u$ on $\left(e_{q}, e_{p+k+1}\right)$. Since $\left.\tilde{u}\right|_{I_{i}} \in U_{i}, i=p+1, \ldots, p+$ $k+1$, and $\tilde{u}\left(e_{p}\right)=\tilde{u}\left(e_{p+k+1}\right)=0$ for every $\tilde{u} \in \tilde{V}(\hat{u})$, every function $\left.\tilde{u}\right|_{\left[e_{p}, e_{p+k+1}\right]}$ has a periodic extension in U. Moreover, since $\tilde{V}(\hat{u})$ satisfies Property A, similarly arguing as in Case 3.6 .2 we find a $\tilde{u} \in \tilde{V}(\hat{u})$ such that \tilde{u} has the desired sign behaviour on $\left[e_{p}, e_{p+k+1}\right]$ (where the separated zeros $\left\{x_{i}\right\}_{i=1}^{m+1}$ are identified with a subset of the sphere and, therefore, they correspond to a set of separated zeros in $\left[e_{p}, e_{p+k+1}\right]$). Thus the extension of \tilde{u} in U (again denoted by \tilde{u}) is a function with the desired properties on $\left[e_{p}, e_{p+k+1}\right]$ and, therefore, on $[a, b]$.

This completes the proof of Claim 3.7.
Proof of Theorem 7. From Claim 3.2 it follows that $Z(U)=\emptyset$. Moreover, in view of Claim 3.4, statement (2)(a) of Theorem 5 is satisfied. Finally, statement (2)(b) of Theorem 5 follows from Claim 3.7.

Hence by Theorem 5, U satisfies Property $\mathrm{A}_{\text {per }}$.
Example 4 (Periodic splines). Given $k \geqslant 0$ and $l \geqslant 1$, let $a=e_{0}<e_{1}<\cdots<e_{k+1}=b$. Extend this knot vector to a knot sequence on \mathbb{R} by

$$
e_{i+j(k+1)}=e_{i}+j(b-a), \quad i=0, \ldots, k+1, \quad j \in \mathbb{Z} \backslash\{0\}
$$

Set $\Delta=\left\{e_{i}\right\}_{i \in \mathbb{Z}}$ and $I_{i}=\left[e_{i-1}, e_{i}\right], i \in \mathbb{Z}$. By Π_{l} we denote the linear space of all polynomials of degree at most l. For any $q \in\{1, \ldots, l\}$ we consider the linear space $S_{l}^{l-q}(\Delta)$ defined by

$$
S_{l}^{l-q}(\Delta)=\left\{s \in C^{l-q}(\mathbb{R}):\left.s\right|_{I_{i}} \in \Pi_{l}, i \in \mathbb{Z}\right\}
$$

the subspace of polynomial spline functions of degree l with the fixed knots $\left\{e_{i}\right\}_{i \in \mathbb{Z}}$ of multiplicity q. It is well-known (cf. [6, Theorem 4.5]) that $\left.\operatorname{dim} S_{l}^{l-q}(\Delta)\right|_{[a, b]}=$ $l+1+q k$ and a natural basis on $[a, b]$ is given by

$$
1, x, \ldots, x^{l},\left(x-e_{1}\right)_{+}^{l}, \ldots,\left(x-e_{1}\right)_{+}^{l-q+1}, \ldots,\left(x-e_{k}\right)_{+}^{l}, \ldots,\left(x-e_{k}\right)_{+}^{l-q+1}
$$

where

$$
\left(x-e_{i}\right)_{+}^{r}:= \begin{cases}\left(x-e_{i}\right)^{r} & \text { if } x \geqslant e_{i} \\ 0 & \text { if } x<e_{i}\end{cases}
$$

Moreover, it is well-known that $S_{l}^{l-q}(\Delta)$ is a WT-system on $[a, b]$ [6, Theorem 4.55] and satisfies Property A there [4, p. 81].

For that what follows we need a local basis of $S_{l}^{l-q}(\Delta)$, the basis of B-splines. To define it we split up each knot e_{i} according to its multiplicity q by setting

$$
e_{i}=y_{i q}=y_{i q+1}=\cdots=y_{(i+1) q-1}, \quad i \in \mathbb{Z} .
$$

Then it is well-known [6, Theorem 4.9] that a basis of $S_{l}^{l-q}(\Delta)$ is given by $\left\{B_{\mu}\right\}_{\mu \in \mathbb{Z}}$ where B_{μ} is the unique B-spline satisfying

$$
\begin{aligned}
& B_{\mu}=0 \quad \text { on } \mathbb{R} \backslash\left(y_{\mu}, y_{\mu+l+1}\right), \\
& B_{\mu}(x)>0 \quad \text { for } x \in\left(y_{\mu}, y_{\mu+l+1}\right), \\
& \sum_{\mu \in \mathbb{Z}} B_{\mu}(x)=1 \quad \text { for } x \in \mathbb{R} .
\end{aligned}
$$

Moreover, it is well-known [6, Theorem 4.64] that every subsystem $\left\{B_{\mu_{1}}, B_{\mu_{1}+1}, \ldots, B_{\mu_{2}}\right\}$ where $\mu_{1}, \mu_{2} \in \mathbb{Z}, \mu_{1}<\mu_{2}$, spans a WT-space.

We are now interested in the subspace

$$
\begin{equation*}
P_{l}^{l-q}(\Delta)=S_{l}^{l-q}(\Delta) \cap C_{b-a}, \tag{4.7}
\end{equation*}
$$

the subspace of periodic splines of degree l with the fixed knots $\left\{e_{i}\right\}_{i \in \mathbb{Z}}$ of multiplicity q. It is easily verified that

$$
\operatorname{dim} P_{l}^{l-q}(\Delta)=l+1+q k-(l-q+1)=q(k+1) .
$$

Theorem 8. Let $U=P_{l}^{l-q}(\Delta)$, the space of periodic splines defined in (4.7). Then U satisfies Property $\mathrm{A}_{\mathrm{per}}$.

To prove this statement we distinguish two cases.
Case 4.1: Let $q=l$. Then $\left.S_{l}^{0}(\Delta)\right|_{[a, b]}$ is obviously a space of piecing together the Haar systems $U_{i}=\Pi_{l}, i=1, \ldots, k+1$. This implies that $\left.S_{l}^{0}(\Delta)\right|_{[a, b]}$ corresponds to a space V as considered in Example 3. Hence by the arguments in the proof of Example 3, the space $U=P_{l}^{0}(\Delta)$ satisfies Property $\mathrm{A}_{\text {per }}$.

Case 4.2: Assume that $q \in\{1, \ldots, l-1\}$. To show that $U=P_{l}^{l-q}(\Delta)$ satisfies Property $\mathrm{A}_{\text {per }}$ we divide the proof into several parts.

Claim 4.1. Let $u \in U$. Then

$$
\begin{equation*}
[S \backslash Z(u)] \leqslant \operatorname{dim} U(u) \tag{4.8}
\end{equation*}
$$

Proof. Assume first that $U(u)=U$ and $S \backslash Z(u)=\bigcup_{i=1}^{r} A_{i}$, the union of the connected components, where $r \geqslant \operatorname{dim} U+1=q(k+1)+1$. It is easily seen that for each $i \in\{1, \ldots, r\}$ there exists a $z_{i} \in A_{i}$ such that $u^{\prime}\left(z_{i}\right)=0$ (the derivative of u) and $\left\{z_{i}\right\}_{i=1}^{r+1}$ is a set of separated zeros of u^{\prime} (as a subset of \mathbb{R}) satisfying, without loss of
generality,

$$
a \leqslant z_{1}<\cdots<z_{r} \leqslant b \leqslant z_{r+1}=z_{1}+b-a
$$

and $z_{r}-z_{1}<b-a$. Hence

$$
\left[S \backslash Z\left(u^{\prime}\right)\right] \geqslant r .
$$

By a repeated application of this argument we finally obtain that

$$
\left[S \backslash Z\left(u^{(l-q)}\right)\right] \geqslant r .
$$

Moreover, $u^{(l-q)}$ is a continuous and periodic spline function of degree q which implies that

$$
u^{(l-q)} \in P_{q}^{0}(\Delta)
$$

Since $\operatorname{dim} P_{q}^{0}(\Delta)=q(k+1)$, we then have got that

$$
\left[S \backslash Z\left(u^{(l-q)}\right)\right] \geqslant r \geqslant q(k+1)+1=\operatorname{dim} P_{q}^{0}(\Delta)+1
$$

But this contradicts (4.5), because $P_{q}^{0}(\Delta)$ is a space of piecing together the Haar systems $U_{i}=\Pi_{q}, i \in \mathbb{Z}$, as considered in Example 3.

Assume now that u has a unique zero interval $J=\left[e_{\mu}, e_{v}\right]$ in $[a, b]$. To determine the dimension of $U(u)$ we consider the interval $\tilde{J}=\left[e_{\mu}, e_{v+k+1}\right]$. Then u has the unique zero intervals J and $\hat{J}=\left[e_{\mu+k+1}, e_{v+k+1}\right]$ in \tilde{J}, and, since

$$
e_{v}=y_{v q+i}, \quad e_{\mu+k+1}=y_{(\mu+k+1) q+i}, \quad i=0, \ldots, q-1,
$$

it is easily verified that

$$
\left.U(u)\right|_{\tilde{J}}=\left.\operatorname{span}\left\{B_{v q}, B_{v q+1}, \ldots, B_{(\mu+k+2) q-l-2}\right\}\right|_{\tilde{j}} .
$$

Therefore,

$$
\tilde{d}:=\operatorname{dim} U(u)=\left.\operatorname{dim} U(u)\right|_{\tilde{J}}=(\mu+k+2-v) q-l-1 .
$$

Suppose that $[S \backslash Z(u)] \geqslant \tilde{d}+1$. Then, since $u\left(e_{v}\right)=u\left(e_{\mu+k+1}\right)=0, u$ has at least $\tilde{d}+2$ separated zeros

$$
z_{0}=e_{v}<z_{1}<\cdots<z_{\tilde{d}}<e_{\mu+k+1}=z_{\tilde{d}+1}
$$

Since $u^{(j)}\left(e_{v}\right)=u^{(j)}\left(e_{\mu+k+1}\right)=0, j=0, \ldots, l-q$, it then follows that $u^{(j)}$ has at least $\tilde{d}+j+2$ separated zeros in $\tilde{J}, j=0, \ldots, l-q$. But, $u^{(l-q)} \in P_{q}^{0}(\Delta)$ which implies that $u^{(l-q)}$ has at most q separated zeros in each $I_{i}, i=v+1, \ldots, \mu+k+1$, i.e., $u^{(l-q)}$ has at most

$$
\sum_{i=v+1}^{\mu+k+1} q=(\mu+k+1-v) q<(\mu+k+1-v) q+1=\tilde{d}+l-q+2
$$

a contradiction. (This part can also be proved by applying [6, Theorem 4.53].)
Finally, assume that u has exactly r zero intervals $J_{i}=\left[e_{\mu_{i}}, e_{v_{i}}\right]$ satisfying $e_{v_{i}}<e_{\mu_{i+1}}$, $i=1, \ldots, r-1$ with $r \geqslant 2$ in $[a, b]$. Set $J_{r+1}=\left[e_{\mu_{r+1}}, e_{v_{r+1}}\right]$ where $e_{\mu_{r+1}}=e_{\mu_{1}+k+1}, e_{v_{r+1}}=$ $e_{v_{1}+k+1}$, and $\tilde{J}_{i}=\left[e_{\mu_{i}}, e_{v_{i+1}}\right], i=1, \ldots, r$. Then analogously as above it is easy to see
that

$$
\left.U(u)\right|_{\tilde{J}_{i}}=\left.\operatorname{span}\left\{B_{v_{i} q}, B_{v_{i} q+1}, \ldots, B_{\left(\mu_{i+1}+1\right) q-l-2}\right\}\right|_{\tilde{J}_{i}},
$$

$i=1, \ldots, r$, and

$$
\begin{equation*}
\operatorname{dim} U(u)=\left.\sum_{i=1}^{r} \operatorname{dim} U(u)\right|_{\tilde{J}_{i}} . \tag{4.9}
\end{equation*}
$$

Since every \tilde{J}_{i} corresponds to the interval \tilde{J} in the above considered case of a unique zero interval, we can apply the above arguments and obtain that

$$
\left[\tilde{J}_{i} \backslash Z(u)\right] \leqslant\left.\operatorname{dim} U(u)\right|_{\tilde{J}_{i}},
$$

$i=1, \ldots, r$. Then the statement follows from (4.9).
This completes the proof of Claim 4.1.
Claim 4.2. $U=P_{l}^{l-q}(\Delta)$ is a WT-system on $[a, b]$, if its dimension is odd.
Proof. Assume that there exists a $\hat{u} \in U$ such that \hat{u} has at least $q(k+1)$ sign changes in (a, b). Then, similarly arguing as in the proof of Claim 4.1, we obtain that $\hat{u}^{(l-q)}$ has at least $q(k+1)$ sign changes in S. In fact, $\hat{u}^{(l-q)}$ must have at least $q(k+1)+1$ sign changes in S, because $q(k+1)$ is odd. Thus it follows that

$$
\left[S \backslash Z\left(\hat{u}^{(l-q)}\right)\right] \geqslant q(k+1)+1 .
$$

But this contradicts (4.5), since $\hat{u}^{(l-q)} \in P_{q}^{0}(\Delta)$ and $P_{q}^{0}(\Delta)$ is a space of piecing together the Haar systems $U_{i}=\Pi_{q}, i \in \mathbb{Z}$, satisfying $\operatorname{dim} P_{q}^{0}(\Delta)=q(k+1)$.

Claim 4.3. Let $q(k+1)$ be even and define

$$
\tilde{U}=\left\{\tilde{u} \in U: \tilde{u} \in C^{l-q+1}\left(e_{k}-\varepsilon, e_{k}+\varepsilon\right) \text { for } \varepsilon>0 \text { sufficiently small }\right\} .
$$

Then $\operatorname{dim} \tilde{U}=q(k+1)-1$ and \tilde{U} is a WT-system on $[a, b]$.
Proof. Recall first that $u \in C^{l-q}(\mathbb{R})$ for every $u \in U$. Since in addition every $\tilde{u} \in \tilde{U}$ is at least $l-q+1$ times continuously differentiable in a neighborhood of the knot e_{k}, the periodic spline space \tilde{U} is defined by the given knot sequence Δ with the difference that e_{k} (and all of its periodic analogues $\left\{e_{k+i(k+1)}\right\}_{i \in \mathbb{Z}}$) are chosen to be of multiplicity $q-1$ (the multiplicity q of the other knots in Δ remains unchanged). Thus it follows that

$$
\tilde{d}:=\operatorname{dim} \tilde{U}=\operatorname{dim} U-1=q(k+1)-1 .
$$

Suppose now that there exists a $\tilde{u} \in \tilde{U}$ such that \tilde{u} has at least \tilde{d} sign changes in (a, b). Since by assumption \tilde{d} is odd, as in the proof of Claim 4.2 we can show that $\tilde{u}^{(l-q)}$ has at least $\tilde{d}+1$ sign changes in S.

Let $D=\bigcup_{i \in \mathbb{Z}}\left(e_{i}, e_{i+1}\right) \cup\left\{e_{k+j(k+1)}\right\}_{j \in \mathbb{Z}}$ and set

$$
\hat{u}(x)= \begin{cases}\frac{d}{d x} \tilde{u}^{(l-q)}(x) & \text { if } x \in D \\ 0 & \text { if } x \in \mathbb{R} \backslash D\end{cases}
$$

Since \hat{u} is a piecewise polynomial of degree $q-1$ on D, it has at most $q-1$ zeros with a sign change in each $\left(e_{i}, e_{i+1}\right), i=0, \ldots, k-2$, and at most $2 q-2$ zeros with a sign change in $\left(e_{k-1}, e_{k+1}\right)$ (note that \hat{u} is continuous at e_{k}). Moreover, \hat{u} can change the sign in $\left(e_{i}-\delta, e_{i}+\delta\right), i=0, \ldots, k-1$, for some $\delta>0$ sufficiently small. Thus it follows that \hat{u} has at most

$$
(k-1)(q-1)+2 q-2+k=q(k+1)-1=\tilde{d}
$$

sign changes in S. On the other hand, $\tilde{u}^{(l-q)}$ has at least $\tilde{d}+1$ sign changes in S which implies that \hat{u} must have at least $\tilde{d}+1$ sign changes in S, a contradiction.

Thus we have shown that \tilde{U} is a WT-system on $[a, b]$.
Claim 4.4. Let $u \in U \backslash\{0\}$ and let a set $\left\{x_{i}\right\}_{i=1}^{m+1}$ of separated zeros of u be given satisfying

$$
\begin{equation*}
a \leqslant x_{1}<x_{2}<\cdots<x_{m} \leqslant b \leqslant x_{m+1}=x_{1}+b-a \tag{4.10}
\end{equation*}
$$

and $x_{m}-x_{1}<b-a$ where $1 \leqslant m \leqslant \operatorname{dim} U(u)$. Then there exists a $\tilde{u} \in U(u) \backslash\{0\}$ such that

$$
\begin{equation*}
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=1, \ldots, m . \tag{4.11}
\end{equation*}
$$

Proof. We consider several cases.
Case 4.4.1. Assume that $U(u)=U$. Let $d:=\operatorname{dim} U=q(k+1)$ and let a set of separated zeros of u be given by (4.10). Suppose first that $m=d$. Since $U(u)=U, u$ has at most finitely many zeros in $[a, b]$. We show that u changes the sign at x_{i}, $i=2, \ldots, m$. Otherwise, $u^{\prime}\left(x_{i_{0}}\right)=0$ for some $i_{0} \in\{2, \ldots, m\}$. Moreover, it is easy to see that for every $i \in\{2, \ldots, m+1\}$ there exists a $z_{i} \in\left(x_{i-1}, x_{i}\right)$ such that $u^{\prime}\left(z_{i}\right)=0$ and $\left\{x_{i_{0}}, z_{2}, \ldots, z_{m+1}, z_{2}+b-a\right\}$ are separated zeros of u^{\prime}. This implies that

$$
\left[S \backslash Z\left(u^{\prime}\right)\right] \geqslant m+1=d+1 .
$$

By a repeated application we finally obtain that

$$
\left[S \backslash Z\left(u^{(l-q)}\right)\right] \geqslant d+1
$$

But this contradicts (4.5), because $u^{(l-q)} \in P_{q}^{0}(\Delta)$ and $\operatorname{dim} P_{q}^{0}(\Delta)=q(k+1)$.
In the same way we can show that $Z(u) \cap\left[x_{1}, x_{m+1}\right]=\left\{x_{i}\right\}_{i=1}^{m+1}$.
Thus we have shown that u has exactly $m+1$ zeros in $\left[x_{1}, x_{m+1}\right]$ and changes the sign at $x_{i}, i=2, \ldots, m$. Hence setting $\tilde{u}=\varepsilon u$ for some $\varepsilon \in\{-1,1\}$ we obtain

$$
(-1)^{i} \tilde{u}(x) \geqslant 0, \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=1, \ldots, m
$$

Assume now that $m \leqslant d-1$ and d is even. Then arguing in the same way as in Case 3.6.1 and applying Claim 4.3 we obtain a $\tilde{u} \in U \backslash\{0\}$ such that (4.11) holds. If d is odd,
then by Claim 4.2 U itself is a WT-system on $[a, b]$ and arguing analogously as in the case when d is even a $\tilde{u} \in U \backslash\{0\}$ with the desired properties can be found.

Case 4.4.2: Assume that u has at least two zero intervals $J_{1}=\left[e_{\mu_{1}}, e_{v_{1}}\right]$ and $J_{2}=$ $\left[e_{\mu_{2}}, e_{v_{2}}\right]$ in $[a, b]$ such that $e_{v_{1}}<e_{\mu_{2}}$ and u has at most finitely many zeros in $\left[e_{v_{1}}, e_{\mu_{2}}\right]$. Let $\left\{x_{i}\right\}_{i=1}^{m} \cap\left(e_{v_{1}}, e_{\mu_{2}}\right)=\left\{y_{i}\right\}_{i=1}^{r}$ such that $y_{0}=e_{v_{1}}<y_{1}<\cdots<y_{r}<e_{\mu_{2}}=y_{r+1}$. Define $\hat{u} \in V=S_{l}^{l-q}(\Delta)$ satisfying $\hat{u}=0$ on $\left[a, e_{v_{1}}\right] \cup\left[e_{\mu_{2}}, b\right]$ and $\hat{u}=u$ on $\left(e_{v_{1}}, e_{\mu_{2}}\right)$. Since V satisfies Property A on $[a, b]$, the subspace $V(\hat{u})$ satisfies Property A on $[a, b]$. Then, considering several cases as in Case 3.6.2 we find a $\tilde{u} \in V(\hat{u}) \backslash\{0\}$ such that (4.11) holds.

Moreover, $\tilde{u}^{(j)}(a)=\tilde{u}^{(j)}(b)=0, j=0, \ldots, l-q$. Therefore, $\tilde{u} \in U(u)$.
Case 4.4.3: Assume that u has a unique zero interval $J=\left[e_{\mu}, e_{v}\right]$ in $[a, b]$. Then by definition of U, u has an additional zero interval $\tilde{J}=\left[e_{\mu+k+1}, e_{v+k+1}\right]$ in the interval $\left[e_{\mu}, e_{v+k+1}\right]$. Since $S_{l}^{l-q}(\Delta)$ also satisfies Property A on $[a, a+2(b-a)]$, analogously arguing as in Case 4.4 .2 we obtain the desired function \tilde{u}.

This completes the proof of Claim 4.4.
Proof of Theorem 8. Let $U=P_{l}^{l-q}(\Delta)$. If $q=l$, the statement follows from Case 4.1. Otherwise, let $q \in\{1, \ldots, l-1\}$. Since the constant functions are contained in U, it follows that $Z(U)=\emptyset$. Moreover, in view of Claim 4.1, statement (2)(a) of Theorem 5 is satisfied. Finally, statement (2)(b) of Theorem 5 follows from Claim 4.4.

Hence by Theorem 5, $P_{l}^{l-q}(\Delta)$ satisfies Property $\mathrm{A}_{\text {per }}$.
Remark. For the special case when $q=1$ and the weight function $w=1$ it was shown in [3] that every $f \in C_{b-a}$ has a unique L^{1}-approximation from $U=P_{l}^{l-1}(\Delta)$.

References

[1] V.F. Babenko, M.E. Gorbenko, On the uniqueness of an element of the best L_{1}-approximation for functions with values in a Banach space, Ukrainian Math. J. 52 (2000) 29-34.
[2] W. Li, Weak Chebyshev subspaces and A-subspaces of $C[a, b]$, Trans. Amer. Math. Soc. 322 (1990) 583-591.
[3] G. Meinardus, G. Nürnberger, Uniqueness of best L_{1}-approximations from periodic spline spaces, J. Approx. Theory 58 (1989) 114-120.
[4] A. Pinkus, On L^{1}-Approximation, Cambridge University Press, Cambridge, 1989.
[5] A. Pinkus, B. Wajnryb, Necessary conditions for uniqueness in L^{1}-approximation, J. Approx. Theory 53 (1988) 54-66.
[6] L.L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.
[7] H. Strauss, Best L_{1}-approximation, J. Approx. Theory 41 (1984) 297-308.

[^0]: E-mail address: manfred.sommer@ku-eichstaett.de.

