



JOURNAL OF Approximation Theory

Journal of Approximation Theory 123 (2003) 89-109

http://www.elsevier.com/locate/jat

# Uniqueness of periodic best $L^1$ -approximations

Manfred Sommer

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, D-85071 Eichstätt, Germany

Received 9 July 2002; accepted in revised form 2 April 2003

Communicated by Günther Nürnberger

#### Abstract

In this paper we give a characterization of the finite-dimensional subspaces of periodic, realvalued and continuous functions which admit uniqueness of best  $L^1$ -approximations. Our investigations are based on the well-known Property A which characterizes a finitedimensional subspace of continuous functions to be a unicity subspace with respect to a class of weighted  $L^1$ -norms.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Uniqueness of best  $L^1$ -approximations; Periodic functions; Property A; Spline functions

## 1. Introduction

Let  $C_{b-a}$  denote the subspace of all continuous, (b-a)-periodic functions  $f : \mathbb{R} \to \mathbb{R}$  where a < b, i.e.,

$$C_{b-a} = \{ f \in C(\mathbb{R}) : f(x) = f(x + (b - a)), \ x \in \mathbb{R} \}.$$

We are interested in a characterization of the finite-dimensional subspaces U of  $C_{b-a}$  such that every  $f \in C_{b-a}$  has a unique best approximation from U with respect to a class of weighted  $L^1$ -norms. The central role in our investigations plays Property A (Definition 1), introduced by Strauss [7] as a sufficient condition for  $L^1(\mu)$ -unicity subspaces of real-valued continuous functions defined on [a, b] where  $\mu = \lambda$ , the Lebesgue measure. In a series of papers written by Kroó, Pinkus, Schmidt, Sommer, Wajnryb (a detailed survey of the results has been given by Pinkus in his excellent monograph [4]), and by Li [2], Property A was applied to give a characterization of  $L^1(\mu)$ -unicity subspaces of real-valued continuous functions defined on certain

E-mail address: manfred.sommer@ku-eichstaett.de.

compact subsets of  $\mathbb{R}^d$   $(d \ge 1)$  for a class of 'admissible' measures (Theorem 1). Recently, Babenko et al. (see e.g. [1] for references) also obtained interesting results on uniqueness of best  $L^1$ -approximations.

Since every real halfopen interval [a, b) is homeomorphic to the unit sphere S in  $\mathbb{R}^2$ , the problem of uniqueness of best  $L^1(\mu)$ -approximations of  $f \in C_{b-a}$  from a subspace U of  $C_{b-a}$  can be considered as an  $L^1(\mu)$ -approximation problem in C(S), the space of all real-valued continuous functions on S. In fact, using some general necessary conditions for Property A due to Pinkus and Wajnryb [5] we are able to give a characterization of the finite-dimensional subspaces U of  $C_{b-a}$  such that every  $f \in C_{b-a}$  has a unique best  $L^1(\mu)$ -approximation for a class of weighted measures  $\mu$  (Theorem 5).

Finally, we present some examples for  $L^1(\mu)$ -unicity subspaces in  $C_{b-a}$ , including spaces of trigonometric polynomials, of piecing together Haar systems and of periodic polynomial splines. In particular, we obtain a result of Meinardus and Nürnberger [3] who showed that every function  $f \in C_{b-a}$  has a unique  $L^1$ approximation (with respect to  $\lambda$ ) from  $U = P_m(K_n)$ , the subspace of periodic polynomial splines of degree  $m \ge 1$  with a set of simple knots  $K_n$ .

## 2. Property A in the nonperiodic case

A central role in best  $L^1(\mu)$ -approximation problems plays Property A. To define it in a general setting, let  $K \subset \mathbb{R}^d$   $(d \ge 1)$  such that

(1) K is a compact set,

(2)  $K = \overline{\operatorname{int} K}$  (the closure of its interior).

U will always denote an *n*-dimensional subspace of C(K), the space of all realvalued continuous functions defined on K. We define a set W of measures on K by

$$W = \{\mu : d\mu = w \, d\lambda, \ w \in L^{\infty}(K), \text{ ess inf } w > 0 \text{ on } K\}$$

( $\lambda$  means the Lebesgue measure on K). For  $\mu \in W$ , the  $L^1(\mu)$ -norm is defined by

$$||f||_{\mu} = \int_{K} |f| d\mu \quad (f \in C(K)).$$

Let  $C_1(K, \mu)$  denote the linear space C(K) endowed with norm  $|| \cdot ||_{\mu}$ . We say that U is a *unicity space for*  $C_1(K, \mu)$ ,  $\mu \in W$ , if to each  $f \in C(K)$  there exists a unique best approximation from U in the norm  $|| \cdot ||_{\mu}$ .

We need some notations as follows. Let for any  $g \in C(K)$  and any subset V of C(K),

$$Z(g) = \{x \in K : g(x) = 0\},\$$
  

$$Z(V) = \{x \in K : v(x) = 0 \text{ for all } v \in V\}$$
  
supp  $V = K \setminus Z(V).$ 

Let us now define Property A (cf. [4, p. 98] for its history).

**Definition 1.** We say that U satisfies *Property A* if to each nonzero  $u \in U$  and  $u^* \in C(K)$  such that  $|u^*| = |u|$  on K there exists a  $\tilde{u} \in U \setminus \{0\}$  for which

- (1)  $\tilde{u} = 0$  a.e. on Z(u) (with respect to  $\lambda$ ),
- (2)  $\tilde{u}u^* \ge 0$  on K.

Property A is closely related to the problem of existence of unicity spaces for  $C_1(K,\mu)$ . In fact, it gives a characterization of such subspaces with respect to every  $\mu \in W$ .

**Theorem 1** (See Pinkus [4, p. 58]). A finite-dimensional subspace U of C(K) is a unicity space for  $C_1(K,\mu)$  for all  $\mu \in W$  if and only if U satisfies Property A.

It should be noted that this result holds for a bigger class of 'admissible' measures which are absolutely continuous with respect to  $\lambda$ .

Various consequences of Property A which, in particular, are very helpful for our periodic problem were obtained. To describe them we need some definitions.

**Definition 2.** Let  $D \subset K$ , D (relatively) open. Then [D] will denote the number (possibly infinite but necessarily countable) of open connected components of D.

**Definition 3.** We say that U decomposes if there exist subspaces V and  $\tilde{V}$  of U with dim  $V \ge 1$ , dim  $\tilde{V} \ge 1$  such that

(1)  $U = V \oplus \tilde{V}$ , i.e.,  $U = V + \tilde{V}$  and  $V \cap \tilde{V} = \{0\}$ , (2) supp  $V \cap$  supp  $\tilde{V} = \emptyset$ .

To simplify the notations we also define:

**Definition 4.** For  $u \in U$ , set

 $U(u) = \{v : v \in U, v = 0 a.e. on Z(u)\}.$ 

The following consequences of Property A due to Pinkus and Wajnryb are very important to our investigations.

**Theorem 2** (See Pinkus [4, Theorems 4.6, 4.12]). *Suppose that U satisfies Property* A. *Then* 

(1)  $[K \setminus Z(u)] \leq \dim U(u)$  for every  $u \in U$ , and (2) U decomposes, if  $[K \setminus Z(U)] \geq 2$ .

**Remark 1.** (1) It is easily seen that if U decomposes by subspaces V and  $\tilde{V}$ , then U satisfies Property A if and only if both V and  $\tilde{V}$  satisfy Property A [4, p. 70].

(2) In particular, Pinkus showed that if  $K \subset \mathbb{R}$ , the first statement of Theorem 2 is both necessary and sufficient for U to satisfy Property A [4, p. 75].

(3) For the case when  $K \subset \mathbb{R}$ , Pinkus gave an interesting classification of all finitedimensional subspaces U of C(K) which satisfy Property A. As a result, such a space has to have a 'spline-like' structure [4, p. 75]. A slightly simplified characterization of such spaces on K = [a, b] was obtained by Li [2].

# **3.** $L^{1}(\mu)$ -approximation by subspaces of periodic functions

Assume now that U and W will denote an *n*-dimensional subspace of  $C_{b-a}$  and the set of weighted measures on K = [a, b] defined in Section 2, respectively.

We say that U is a *periodic unicity space for*  $C_1([a,b],\mu)$ ,  $\mu \in W$ , if to each  $f \in C_{b-a}$  there exists a unique best approximation from U on [a,b] in the norm  $|| \cdot ||_{u}$ .

Since every function in  $C_{b-a}$  is defined on  $\mathbb{R}$  and has period b-a, our approximation problem can be 'shifted' to any interval  $[\alpha, \beta]$  with  $\beta - \alpha = b - a$  by extending every measure  $\mu \in W$ , i.e.,  $d\mu = w d\lambda$ , to a 'periodic' measure  $\tilde{\mu}$  such that

$$d\tilde{\mu} = \tilde{w} d\lambda$$

and

$$\tilde{w}(x) = \begin{cases} w(x) & \text{if } x \in [a, b], \\ w(x + (b - a)) & \text{otherwise.} \end{cases}$$

This implies that if  $f \in C_{b-a}$ ,

$$\min_{u \in U} \int_a^b |f - u| \, d\mu = \min_{u \in U} \int_\alpha^\beta |f - u| \, d\tilde{\mu}.$$

Moreover, to apply some of the statements of the nonperiodic case in Section 2, we consider our periodic approximation problem as a nonperiodic problem on C(S) where S denotes the unit sphere in  $\mathbb{R}^2$ . In fact, both problems are actually the same, because every halfopen interval [a, b) is homeomorphic to S, for instance by the mapping  $\varphi : [a, b) \rightarrow S$  defined by

$$\varphi((1-t)a + tb) = (\cos 2\pi t, \sin 2\pi t), \quad t \in [0, 1).$$

In particular,  $\varphi$  defines a counterclockwise order on *S* setting  $\varphi(c) < \varphi(d)$  if  $a \le c < d < b$ . Thus, to simplify the following arguments, we identify (if necessary) the function  $f \in C_{b-a}$  and the subspace *U* of  $C_{b-a}$  with a function and a subspace of C(S), again denoted by f and U, respectively. It should be noted that for  $\mu \in W$  the  $L^1(\mu)$ -norm of  $f \in C_{b-a}$ , taken over [a,b] and *S*, respectively, differs only by a constant factor independently of f.

Although for the compact set  $K = S \subset \mathbb{R}^2$  the additional assumption that  $K = \overline{\operatorname{int} K}$  does not hold (in the topology of  $\mathbb{R}^2$ ), some of the statements in Section 2 remain valid. In fact, the following statements still hold.

**Theorem 3.** A finite-dimensional subspace U of  $C_{b-a}$  is a periodic unicity space for  $C_1([a,b],\mu)$  for all  $\mu \in W$  if and only if U (as a subspace of C(S)) satisfies Property A on S.

**Proof.** Following the lines of the proof of Theorem 1 it turns out that the arguments are also true in the case when  $U \subset C(S)$ . Thus the statement follows immediately from Theorem 1.  $\Box$ 

**Remark 2.** (1) To make clearer the difference between the statements that U satisfies Property A on [a, b] (which corresponds to the nonperiodic case) and Property A on S (U considered as subspace of C(S)), respectively, we give the following definition: We say that the subspace U of  $C_{b-a}$  satisfies *Property* A<sub>per</sub> if to each nonzero  $u \in U$ and  $u^* \in C_{b-a}$  such that  $|u^*| = |u|$  on [a, b] there exists a  $\tilde{u} \in U \setminus \{0\}$  for which

(1)  $\tilde{u} = 0$  a.e. on Z(u), (2)  $\tilde{u}u^* \ge 0$  on [a, b].

Thus, U satisfies Property A on S if and only if U satisfies Property  $A_{per}$ .

(2) It is easily seen that if U satisfies Property  $A_{per}$ , then U(u) satisfies Property  $A_{per}$  for every  $u \in U$ .

**Theorem 4.** Suppose that U satisfies Property  $A_{per}$ . Then

- (1)  $[S \setminus Z(u)] \leq \dim U(u)$  for every  $u \in U$ , and
- (2) U decomposes, if  $[S \setminus Z(U)] \ge 2$ .

**Proof.** Identify again U with a subspace of C(S). Then U(u) corresponds to a subspace of C(S) for every  $u \in U$ , and Z(u), Z(U) correspond to subsets of S. Now following the lines of the proof of Theorem 2 it turns out that the same arguments can be applied to the case when  $U \subset C(S)$ . Thus the statement follows from Theorem 2.  $\Box$ 

**Remark 3.** (1) Of course, Property A<sub>per</sub> is weaker than Property A on K = [a, b]. For instance, let K = [0, 1] and let  $U = \text{span}\{u_1, u_2\} \subset C_{1-0}$  where  $u_1(x) = 1$  and  $u_2(x) = (x - \frac{1}{4})(x - \frac{3}{4}), x \in [0, 1]$ . Then it follows that  $[K \setminus Z(u_2)] = 3$  which, in view of Theorem 2, implies that U does not satisfy Property A on [0, 1].

But, considering  $u_2$  as a function on S, it obviously follows that  $[S \setminus Z(u_2)] = 2 = \dim U(u_2) = \dim U$ . In fact, we can show that U satisfies Property  $A_{per}$ . Suppose that  $u = c_1u_1 + c_2u_2 \in U \setminus \{0\}$ . Let  $u^* \in C_{1-0}$  with  $|u^*| = |u|$ . Assume first that u has no sign change on (0, 1). Then  $u^*$  has no sign chance on (0, 1) and  $\varepsilon uu^* \ge 0$  on [0, 1] for some  $\varepsilon \in \{-1, 1\}$ . Assume now that u has a sign change  $\tilde{x} \in (0, 1)$ . Then by definition of  $u_1$  and  $u_2$ ,  $Z(u) = \{\tilde{x}, 1 - \tilde{x}\}$ . This implies that either  $\varepsilon u^* \ge 0$  or  $\varepsilon u^* = u$  on [0, 1] for some  $\varepsilon \in \{-1, 1\}$  (recall that  $u^*(0) = u^*(1)$ ). Then in the first case,  $\varepsilon u_1u^* \ge 0$  while in the second case,  $\varepsilon uu^* \ge 0$  on [0, 1].

Thus it follows from Theorems 3 and 1, respectively, that for every  $f \in C_{1-0}$  and each  $\mu \in W$  there exists a unique best  $L^1(\mu)$ -approximation from U, and there must exist  $\tilde{f} \in C[0, 1]$  and  $\tilde{\mu} \in W$  such that  $\tilde{f}$  fails to have a unique best  $L^1(\tilde{\mu})$ -approximation from U.

(2) To obtain the same number of connected components of  $S \setminus Z(u)$  and  $[a,b] \setminus Z(u)$ , respectively, we use the periodic properties: Let  $u \in U \subset C_{b-a}$  and assume first that  $Z(u) = \emptyset$ . Then obviously,  $[S \setminus Z(u)] = [K \setminus Z(u)] = 1$  where K = [a,b]. Assume now that  $Z(u) \neq \emptyset$ . Let  $\tilde{x} \in Z(u)$  and consider u on  $\tilde{K} = [\tilde{x}, \tilde{x} + b - a]$ . Since  $u \in C_{b-a}$ , we have  $u(\tilde{x} + b - a) = 0$ . This implies that

 $[S \setminus Z(u)] = [\tilde{K} \setminus Z(u)].$ 

Thus, statement (1) of Theorem 4 is also satisfied replacing S by an interval  $\tilde{K}$  which depends on u.

## 4. Characterization of Property Aper

In the nonperiodic case the inequality

$$[K \setminus Z(u)] \leqslant \dim U(u) \tag{4.1}$$

for every  $u \in U$  is both necessary and sufficient for U to satisfy Property A if  $K \subset \mathbb{R}$  (see Remark 1). The sufficiency is not true for periodic approximation in general as the following example will show.

**Example 1.** Let K = [0, 1] and assume that  $U = \operatorname{span}\{u_1, u_2\} \subset C_{1-0}$  where  $u_1(x) = (x - \frac{1}{4})(x - \frac{3}{4})$  and  $u_2(x) = x(x - \frac{1}{2})(x - 1), x \in [0, 1]$ . Let  $u = c_1u_1 + c_2u_2 \in U$ . We first show that  $[S \setminus Z(u)] \leq 2$ . This is obviously true if  $c_1 = 0$  or  $c_2 = 0$ . Therefore, assume that  $c_i \neq 0, i = 1, 2$ . Without loss of generality, let  $c_1 = 1$  and  $c_2 < 0$ . This implies that  $u(1) = u_1(1) > 0$ . Since u coincides on [0, 1] with the polynomial

$$p(x) = (x - \frac{1}{4})(x - \frac{3}{4}) + c_2 x(x - \frac{1}{2})(x - 1), \quad x \in \mathbb{R}$$

and  $\lim_{x\to\infty} p(x) = -\infty$ , it follows that p has a zero in  $(1, \infty)$ . Thus, u can have at most two zeros in [0, 1] (in fact, it has two) and, therefore,

$$[S \setminus Z(u)] \leq 2$$

We now show that U fails to satisfy Property A<sub>per</sub>. On the contrary assume that U has this property. Then, since  $u^* = |u_2| \in C_{1-0}$ , there must exist a  $\tilde{u} \in U$  with  $u^*\tilde{u} \ge 0$ , i.e.,  $\tilde{u} \ge 0$  on [0, 1]. Let  $\tilde{u} = c_1u_1 + c_2u_2$ . Then  $c_1 \ne 0$ , because  $u_2$  changes the sign on (0, 1), and it follows that sign  $\tilde{u}(0) = \operatorname{sign} c_1$  and sign  $\tilde{u}(\frac{1}{2}) = -\operatorname{sign} c_1$ , a contradiction.

This shows that statement (4.1) fails to be a sufficient condition for Property  $A_{per}$  in general.

We now characterize all U in  $C_{b-a}$  which satisfy Property A<sub>per</sub>. On the basis of Theorem 4 we only have to treat the cases  $Z(U) = \emptyset$ ,  $Z(U) = \{a, b\}$  and  $Z(U) = \{\tilde{x}\}$  for some  $\tilde{x} \in (a, b)$ , respectively. Since we identify U with a subspace of C(S), and, therefore, the points a and b correspond to a single point on S, the cases  $Z(U) = \{a, b\}$  and  $Z(U) = \{\tilde{x}\}$  for some  $\tilde{x} \in (a, b)$  can be actually treated in the same way.

*Case* 1: Assume that  $Z(U) = {\tilde{x}}$  for some  $\tilde{x} \in (a, b)$ . Since  $u(\tilde{x}) = 0$  for every  $u \in U$ , we consider U as a subspace of periodic functions on  $K = [\tilde{x}, \tilde{x} + b - a]$ . Assume that U satisfies Property A<sub>per</sub>. It is then easily seen that U even satisfies Property A on K, i.e., the more general nonperiodic case is given. Indeed, let  $u \in U \setminus \{0\}$  and  $u^* \in C(K)$  such that  $|u^*| = |u|$  on K. Since  $u(\tilde{x}) = u(\tilde{x} + b - a) = 0$ , it follows that  $u^*(\tilde{x}) = u^*(\tilde{x} + b - a) = 0$ . Hence,  $u^*$  can be continuously extended to a periodic function on  $\mathbb{R}$  with period b - a, i.e.,  $u^* \in C_{b-a}$ . Then, since U satisfies Property A<sub>per</sub>, there exists a  $\tilde{u} \in U \setminus \{0\}$  for which  $\tilde{u} = 0$  a.e. on Z(u) and  $\tilde{u}u^* \ge 0$  on K.

Thus we have shown that U (as a subspace of C(K)) satisfies Property A on K.

But for this case, Pinkus [4, Theorem 4.16] and Li [2] totally classified all  $U \subset C(K)$  which satisfy Property A. In particular, they showed that such a subspace U has to have a spline-like structure.

Thus, there still remain the case where  $Z(U) = \emptyset$ .

Case 2: Assume that  $Z(U) = \emptyset$ . This is the actually interesting case of our periodic approximation problem. We are able to characterize all subspaces U of  $C_{b-a}$  which satisfy Property  $A_{per}$ .

Before stating the main result, we give the following definition.

**Definition 5.** We say that  $[c, d] \subset \mathbb{R}$  is a zero interval of  $u \in C_{b-a}$  if u = 0 on [c, d], and u does not vanish identically on  $(c - \varepsilon, c)$  and on  $(d, d + \varepsilon)$  for any  $\varepsilon > 0$ .

Moreover, we say that zeros  $\{x_i\}_{i=1}^k \subset \mathbb{R}$  of  $u \in C_{b-a}$  such that  $x_1 < \cdots < x_k$  are separated zeros of u if there exist  $\{y_i\}_{i=1}^{k-1}$  satisfying  $y_i \in (x_i, x_{i+1}), i = 1, \dots, k-1$ , for which  $u(y_i) \neq 0$ .

**Theorem 5.** Assume that U is an n-dimensional subspace of  $C_{b-a}$  satisfying  $Z(U) = \emptyset$ . The following statements (1) and (2) are equivalent.

- (1) U satisfies Property A<sub>per</sub>.
- (2) (a)  $[S \setminus Z(u)] \leq \dim U(u) = d(u)$  for every  $u \in U$ .
  - (b) For every nonzero  $u \in U$  and every set  $\{x_i\}_{i=1}^{m+1}$  of separated zeros of u satisfying

$$a \leq x_1 < \cdots < x_m \leq b \leq x_{m+1} = x_1 + b - a$$

and  $x_m - x_1 < b - a$  where  $1 \le m \le d(u)$  there exists a  $\tilde{u} \in U(u) \setminus \{0\}$  such that  $(-1)^i \tilde{u}(x) \ge 0, \quad x \in [x_i, x_{i+1}], \quad i = 1, ..., m.$ 

**Remark 4.** (1) Before proving the theorem, we want to point out that statement (2)(b) is closely related to an important subclass of subspaces, the weak Chebyshev spaces. An *m*-dimensional subspace V of C[a, b] is said to be a *weak Chebyshev* (WT-) subspace if every  $v \in V$  has at most m-1 sign changes on [a, b], i.e., there do not exist points  $a \leq x_1 < \cdots < x_{m+1} \leq b$  such that

$$v(x_i)v(x_{i+1}) < 0, \quad i = 1, \dots, m.$$

The relationship of statement (2)(b) to WT-spaces is based on the following result (for details on WT-spaces cf. [4, p. 204]):

If V is an m-dimensional WT-subspace of C[a, b] and a set of points is given by

$$y_0 = a < y_1 < \dots < y_k < b = y_{k+1}, \quad k \le m-1,$$

then there exists a  $\tilde{v} \in V \setminus \{0\}$  satisfying

$$(-1)^{l} \tilde{v}(x) \ge 0, \quad x \in [y_{i-1}, y_{i}], \quad i = 1, \dots, k+1.$$

(2) Another relationship to properties of WT-spaces is given by the following fact: If  $U \subset C_{b-a}$  satisfies Property  $A_{per}$ , and for  $u \in U$ , [c, d] is a zero interval of u with  $a \leq c < d \leq b$ , then U(u) satisfies Property  $A_{per}$  (Remark 2). Moreover, it follows that U(u) is a WT-subspace on  $I_c = [c, c + b - a]$ . Indeed, suppose there exists a  $\tilde{u} \in U(u) \setminus \{0\}$  with at least d(u) sign changes on  $I_c$ . This implies that  $[I_c \setminus Z(\tilde{u})] \geq d(u) + 1$ , while in view of Theorem 4,

$$[I_c \setminus Z(\tilde{u})] \leq \dim U(\tilde{u}) \leq d(u),$$

a contradiction (recall that  $\tilde{u}(c) = \tilde{u}(c+b-a) = 0$ ).

In addition, it follows that Case 1 is given, because  $c \in Z(U(u))$ . Hence applying the classification results of the nonperiodic case, a characterization of U(u) by a spline-like structure is obtained (see Case 1 above).

**Proof of Theorem 5.**  $(1) \Rightarrow (2)(a)$ . This is a consequence of Theorem 4.

 $(1) \Rightarrow (2)$ (b). Let  $u \in U \setminus \{0\}$  and let for some  $m \in \{1, ..., d(u)\}$  a set  $\{x_i\}_{i=1}^{m+1}$  of separated zeros of u be given satisfying

 $a \leqslant x_1 < x_2 < \dots < x_m \leqslant b \leqslant x_{m+1} = x_1 + b - a$ 

and  $x_m - x_1 < b - a$ . In particular,  $x_{m+1} > x_m$ , because  $x_{m+1} - x_1 = b - a$ . Set  $t_i = x_i$ , i = 1, ..., m and complete this set by points  $t_m < t_{m+1} < \cdots < t_{d(u)} < x_{m+1}$  to a set of d(u) points. Let  $\{v_1, \ldots, v_{d(u)}\}$  form a basis of U(u). We distinguish.

Assume first that  $\det(v_i(t_j))_{i,j=1}^{d(u)} \neq 0$ . Then m < d(u), because  $u \in U(u)$  and  $u(t_i) = 0$ , i = 1, ..., m. Hence there exists a  $\hat{u} \in U(u)$  satisfying  $\hat{u}(t_i) = 0$ , i = 1, ..., d(u) - 1, and  $\hat{u}(t_{d(u)}) = 1$ . In particular,  $\hat{u}(x_{m+1}) = 0$ . Then there exists a  $u^* \in C_{b-a}$  such that

$$u^*(x) = \begin{cases} (-1)^i |\hat{u}(x)| & \text{if } x \in [t_i, t_{i+1}], \ i = 1, \dots, m-1, \\ (-1)^m |\hat{u}(x)| & \text{if } x \in [t_m, x_{m+1}]. \end{cases}$$

 $\tilde{u}u^* \ge 0$  on S.

This implies that

$$(-1)^{i}\tilde{u}(x) \ge 0, \quad x \in [x_{i}, x_{i+1}], \ i = 1, \dots, m$$

If  $\det(v_i(t_j))_{i,j=1}^{d(u)} = 0$ , there exists a non-zero  $\hat{u} \in U(u)$  satisfying  $\hat{u}(t_i) = 0$ ,  $i = 1, \dots, d(u)$ . Then concluding analogously as above we obtain the desired statement.

(2)  $\Rightarrow$  (1): Let  $u^* \in U \setminus \{0\}$  and assume that  $S \setminus Z(u^*) = \bigcup_{i=1}^l A_i$ , the union of the connected components. To show Property A<sub>per</sub> we must prove that for any choice of  $\varepsilon_i \in \{-1, 1\}, i = 1, ..., l$  there exists a  $\tilde{u} \in U(u^*) \setminus \{0\}$  such that  $\varepsilon_i \tilde{u} \ge 0$  on  $A_i, i = 1, ..., l$ .

Let any set  $\{\varepsilon_1, ..., \varepsilon_l\}$  of signs be given. It first follows from (2)(a) that  $l \leq \dim U(u^*) = d(u^*)$ . If  $Z(u^*) = \emptyset$ , then l = 1 and setting  $\tilde{u} = \varepsilon_1 |u^*| \in U(u^*) \setminus \{0\}$ , the statement follows. Therefore, assume that  $Z(u^*) \neq \emptyset$ . Then, there must exist a set  $\{x_i\}_{i=1}^{m+1}$  of separated zeros of  $u^*$  satisfying

$$a \leqslant x_1 < x_2 < \dots < x_m \leqslant b \leqslant x_{m+1} = x_1 + b - a$$

and

$$\bigcup_{i=1}^{i_1} A_i \subset (x_1, x_2) \quad \text{if } \varepsilon_1 = \dots = \varepsilon_{i_1},$$

$$\bigcup_{i=i_1+1}^{i_2} A_i \subset (x_2, x_3) \quad \text{if } \varepsilon_{i_1+1} = -\varepsilon_{i_1}, \varepsilon_{i_1+1} = \dots = \varepsilon_{i_2},$$

$$\vdots$$

$$\bigcup_{i=i_{m-1}+1}^{i_m} A_i \subset (x_m, x_{m+1}) \quad \text{if } \varepsilon_{i_{m-1}+1} = -\varepsilon_{i_{m-1}}, \varepsilon_{i_{m-1}+1} = \dots = \varepsilon_{i_m} = \varepsilon_l.$$

Of course,  $1 \le m \le l \le d(u^*)$  and  $x_m < x_{m+1}$  which implies that  $x_m - x_1 < b - a$ . Then by hypothesis, we obtain a  $\tilde{u} \in U(u^*) \setminus \{0\}$  satisfying

 $(-1)^{i}\tilde{u}(x) \ge 0, \quad x \in [x_{i}, x_{i+1}], \ i = 1, \dots, m.$ 

Assume, without loss of generality, that  $\varepsilon_1 = -1$ . Then by the choice of  $\{x_i\}_{i=1}^{m+1}$ , we have

 $\varepsilon_i \tilde{u} \ge 0$  on  $A_i$   $i = 1, \dots, l$ .

This completes the proof of Theorem 5.  $\Box$ 

Before presenting examples of some nontrivial classes of subspaces which satisfy Property  $A_{per}$  we want to point out some differences between the characterizations of Property A in the nonperiodic case due to Pinkus and Li and our characterization of Property  $A_{per}$ . For instance, Li [2] gave the following characterization. **Theorem 6.** Let U denote a finite-dimensional subspace of C[a,b] and assume that  $Z(U) \cap (a,b) = \emptyset$ . Then U satisfies Property A if and only if U satisfies the following conditions:

(1) U is a weak Chebyshev space;

(2) 
$$U([c,d]) = U([a,d]) \oplus U([c,b])$$
 for all  $a < c < d < b$ , where for any  $a \le \alpha \le \beta \le b$ ,  
 $U([\alpha,\beta]) = \{u \in U : u = 0 \text{ on } [\alpha,\beta]\}.$ 

**Remark 5.** (1) The second condition implies that every function  $u \in U([c, d])$ 'generates' a function v in U such that v = 0 on [a, d] and v = u on [d, b] (and, analogously, a function  $\tilde{v}$  in U such that  $\tilde{v} = 0$  on [c, b] and  $\tilde{v} = u$  on [a, c]). This property is not true in the periodic case in general: For instance, let K = [0, 3] and assume that  $U = \operatorname{span}\{u_1, u_2\} \subset C_{3-0}$  where  $u_1(x) = 1$  and

$$u_2(x) = \begin{cases} 1 - x & \text{if } 0 \le x \le 1, \\ 0 & \text{if } 1 < x < 2, \\ x - 2 & \text{if } 2 \le x \le 3. \end{cases}$$

Then U satisfies Property A<sub>per</sub>, because U is a space of piecewise polynomials on K with the knots  $x_i = i$ , i = 0, 1, 2, 3 (see Example 3). But, U fails to satisfy statement (2) of Theorem 6, since  $U([1,2]) = \text{span}\{u_2\}$  and  $U([0,2]) = \{0\}$ ,  $U([1,3]) = \{0\}$ .

(2) The above example fails to be a weak Chebyshev space, because  $u_2 - \frac{1}{2}u_1$  has two sign changes in (0,3). Hence statement (1) of Theorem 6 is also not true in the periodic case in general.

**Example 2** (Trigonometric polynomials). Let  $K = [0, 2\pi]$  and assume that U denotes the (2n + 1)-dimensional subspace of all trigonometric polynomials u of order n, i.e.,

$$u(x) = a_0 + \sum_{j=1}^n (a_j \cos jx + b_j \sin jx), \quad x \in [0, 2\pi].$$

It is well-known that U is a *Haar system* on  $[0, 2\pi)$ , i.e., every nonzero  $u \in U$  has at most 2n zeros in  $[0, 2\pi)$ . Hence U(u) = U for every nonzero  $u \in U$  and  $[K \setminus Z(u)] \leq 2n + 1 = \dim U$  which implies, in view of Remark 1, that U satisfies Property A on K. Then in particular, U satisfies Property A<sub>per</sub>.

**Example 3** (Piecing together Haar systems). Let  $a = e_0 < e_1 < \cdots < e_{k+1} = b$ . On each interval  $I_i = [e_{i-1}, e_i]$ , let  $U_i$  be a Haar system of real-valued continuous functions with dimension  $n_i \ge 1$ ,  $i = 1, \dots, k+1$ . For convenience, we especially assume that  $n_1 \ge 2$  and  $n_{k+1} \ge 2$ . V will denote the subspace of C[a, b] defined by

$$V = \{ v \in C[a, b] : v|_{I_i} \in U_i, i = 1, \dots, k+1 \}.$$

It is well-known (cf. [4, p. 80]) that dim  $V = \sum_{i=1}^{k+1} n_i - k$  and V is a WT-system on [a, b]. Moreover, V satisfies Property A on [a, b].

To investigate its periodic analogue we consider the subspace U of  $C_{b-a}$  defined by

$$U = \{ u \in C_{b-a} : u|_{I_i} \in U_i, \ i = 1, \dots, k+1 \}.$$
(4.2)

Thus, U is the space of all periodic extensions of functions  $v \in V$  such that v(a) = v(b).

**Theorem 7.** Let U be the space of periodic functions defined in (4.2). Then U satisfies Property  $A_{per}$ .

To apply Theorem 5 we divide the proof of Theorem 7 into several parts.

Claim 3.1. Let U and V be given as above. Then

 $\dim U = \dim V - 1. \tag{4.3}$ 

**Proof.** Since  $n_1 \ge 2$  and  $n_{k+1} \ge 2$ , by the Haar condition of  $U_1$  and  $U_{k+1}$ , respectively, there exists a  $v \in V$  such that v(a) = 1,  $v(e_1) = 0$ , v = 0 on  $(e_1, e_k)$ , and  $v(e_k) = 0$ , v(b) = -1. Hence v cannot periodically extended to a function in U which implies that

dim  $U < \dim V$ .

To show the statement we set dim V = n + 1 ( $n \ge 0$ ) and suppose that  $\{v_1, \dots, v_{n+1}\}$  forms a basis of V such that

 $v_1 > 0$  on  $[a, b], v_i(a) = 0, i = 2, ..., n + 1.$ 

(Recall that each  $U_i$  is a Haar system on  $I_i$  which implies that there exists a positive function in  $U_i$ .)

We show that  $v_i(b) \neq 0$  for some  $i \in \{2, ..., n+1\}$ . On the contrary, assume that  $v_i(b) = 0$ , i = 2, ..., n+1. Let  $u \in V$  such that u(a) = 1,  $u(e_1) = 0$ , u = 0 on  $(e_1, e_k)$ , and  $u(e_k) = 0$ , u(b) = 1 (*u* can be found analogously as the function *v* above using the Haar condition of  $U_1$  and  $U_{k+1}$ , respectively). Hence it follows that  $\{u, v_2, ..., v_{n+1}\}$  are linearly independent and can be periodically extended to functions in *U*. This implies dim  $U \ge n+1 = \dim V$ , a contradiction. Thus it follows that  $v_l(b) \ne 0$  for some  $l \in \{2, ..., n+1\}$ . Consider the *n* linearly independent functions in *V*,

$$\tilde{v}_1 = v_1 + \frac{v_1(a) - v_1(b)}{v_l(b)}v_l, \quad \tilde{v}_i = v_i - \frac{v_i(b)}{v_l(b)}v_l, \quad i = 2, \dots, n+1, \ i \neq l.$$

Then we obtain that

 $0 \neq \tilde{v}_1(a) = v_1(a) = \tilde{v}_1(b), \quad \tilde{v}_i(a) = \tilde{v}_i(b) = 0, \quad i = 2, \dots, n+1, \ i \neq l$ 

which implies that  $\{\tilde{v}_1, \dots, \tilde{v}_{l-1}, \tilde{v}_{l+1}, \dots, \tilde{v}_{n+1}\}$  can be periodically extended to functions in U. Thus,

 $n \leq \dim U < \dim V = n + 1$ ,

and it follows that dim  $U = n = \dim V - 1$ .  $\Box$ 

Claim 3.2.  $Z(U) = \emptyset$ .

**Proof.** Since each  $U_i$  is a Haar system on  $I_i$ , there exists a positive function in  $U_i$ , i = 1, ..., k + 1. Then piecing together such functions we obtain a continuous and positive function  $\tilde{v}$  on  $[a, e_k]$  such that  $\tilde{v}|_{I_i} \in U_i$ , i = 1, ..., k. Since  $U_{k+1}$  is a Haar system on  $I_{k+1}$  and  $n_{k+1} \ge 2$ , by interpolation we construct a function  $\hat{v} \in U_{k+1}$  such that  $\hat{v}(e_k) = \tilde{v}(e_k)$  and  $\hat{v}(b) = \tilde{v}(a)$ . Piecing together  $\hat{v}$  and  $\tilde{v}$  we then obtain a function  $\tilde{u} \in U$  such that  $\tilde{u} > 0$  on  $[a, e_k]$ . This implies that  $[a, e_k] \cap Z(U) = \emptyset$ . Analogously, we find a function  $\hat{u} \in U$  such that  $\hat{u} > 0$  on  $[e_1, b]$  which implies that  $[e_1, b] \cap Z(U) = \emptyset$ .

Thus the statement is proved.  $\Box$ 

**Claim 3.3.** Let  $u \in U$  and assume that  $\tilde{u} \in V$  such that  $\tilde{u} = u|_{[a,b]}$ . Then we obtain

$$d(u) = \dim U(u) = \begin{cases} \dim V(\tilde{u}) & \text{if } I_1 \cup I_{k+1} \subset Z(u), \\ \dim V(\tilde{u}) - 1 & \text{otherwise.} \end{cases}$$
(4.4)

**Proof.** It is obvious that  $d(u) = \dim U(u) \leq \dim V(\tilde{u})$ . Assume first that  $I_1 \cup I_{k+1} \subset Z(u)$ . Then, if  $v \in V(\tilde{u})$ , it follows that v = 0 on  $I_1 \cup I_{k+1}$ . Hence v has a periodic extension in U(u) which implies that dim  $V(\tilde{u}) \leq d(u)$ .

Assume now, without loss of generality, that u does not vanish identically on  $I_{k+1}$ . Using the Haar condition of  $U_{k+1}$  we find a  $v \in V$  such that

v = 0 on  $[a, e_k], v(b) = 1.$ 

Since  $I_{k+1}$  fails to be a subset of  $Z(\tilde{u})$ , it follows that  $v \in V(\tilde{u})$ . But, since v has no periodic extension in U, we obtain that

$$d(u) < \dim V(\tilde{u}).$$

Arguing similarly as in the proof of (4.3), we can then show that

 $d(u) = \dim V(\tilde{u}) - 1. \qquad \Box$ 

Claim 3.4. Let  $u \in U$ . Then  $[S \setminus Z(u)] \leq d(u)$ .

**Proof.** Set  $\tilde{u} = u|_{[a,b]}$ . Then  $\tilde{u} \in V$ . Since V satisfies Property A, following Theorem 2 and Remark 1 we obtain that

(4.5)

$$[[a,b] \setminus Z(\tilde{u})] \leq \dim V(\tilde{u}).$$

This implies that if  $u(a) = u(b) \neq 0$ ,

$$[S \setminus Z(u)] \leq \dim V(\tilde{u}) - 1,$$

because the first and the last component of  $[a,b]\setminus Z(\tilde{u})$  reduce to one connected component of  $S\setminus Z(u)$ . Hence in view of (4.4), the statement follows. Moreover, the statement also follows, if dim  $V(\tilde{u}) = d(u)$ .

Thus we have still to consider the case when u(a) = u(b) = 0 and  $d(u) = \dim V(\tilde{u}) - 1$ . In view of (4.4), let us assume that  $I_{k+1}$  fails to be a subset of  $Z(\tilde{u})$ . Moreover, suppose that

$$[[a,b] \setminus Z(\tilde{u})] = \dim V(\tilde{u}) = d(u) + 1.$$

Since  $\tilde{u}$  does not vanish identically on  $I_{k+1}$  and  $\tilde{u}(b) = 0$ , it has exactly  $0 \le r \le n_{k+1} - 2$  zeros  $e_k \le z_1 < \cdots < z_r < b$  there (recall that  $U_{k+1}$  is a Haar system on  $I_{k+1}$ ). Assume that  $\tilde{u} > 0$  on  $(b - \varepsilon, b)$  for some  $\varepsilon > 0$ . Interpolating by  $U_{k+1}$  on  $I_{k+1}$  we obtain a function  $\tilde{v} \in V$  such that

 $\tilde{v} = 0$  on  $[a, e_k]$ ,  $\tilde{v}(z_i) = 0$ , i = 1, ..., r,  $\tilde{v}(b) = 1$ .

Then for some sufficiently small c > 0, the function  $\tilde{u} - c\tilde{v} \in V$  has a sign change on  $(b - \varepsilon, b)$  which implies that

$$[[a,b] \setminus Z(\tilde{u} - c\tilde{v})] \ge \dim V(\tilde{u}) + 1.$$

Moreover, since  $\tilde{v} = 0$  on  $[a, e_k]$  and  $\tilde{u} - c\tilde{v}$  does not vanish identically on  $I_{k+1}$ , we obviously obtain that

 $V(\tilde{u} - c\tilde{v}) = V(\tilde{u}).$ 

Thus it follows that

 $[[a,b] \setminus Z(\tilde{u} - c\tilde{v})] \ge \dim V(\tilde{u} - c\tilde{v}) + 1,$ 

in contradiction to Property A of V.

Thus, we have shown that in the case when u(a) = u(b) = 0 and  $d(u) = \dim V(\hat{u}) - 1$ ,

$$[S \setminus Z(u)] = [[a, b] \setminus Z(\tilde{u})] \leq \dim V(\tilde{u}) - 1 = d(u). \qquad \Box$$

**Claim 3.5.** U is a WT-system on [a, b], if  $n (= \dim U)$  is odd.

**Proof.** Assume that there exists a  $\hat{u} \in U$  such that  $\hat{u}$  has at least *n* sign changes in (a, b). If  $\hat{u}(a) = \hat{u}(b) = 0$ , then

$$[[a,b] \setminus Z(\hat{u})] = [S \setminus Z(\hat{u})] \ge n+1 \ge d(\hat{u})+1,$$

which contradicts (4.5). Hence,  $\hat{u}(a) = \hat{u}(b) \neq 0$ . But then, in view of the fact that *n* is odd,  $\hat{u}$  must have at least n + 1 sign changes in (a, b) which contradicts the property of *V* to be a WT-system on [a, b].  $\Box$ 

Claim 3.6. Set

 $\tilde{U} = \{ u \in U : u(a) = 0 \}.$ 

Then dim  $\tilde{U} = n - 1$  and  $\tilde{U}$  is a WT-system on [a, b].

**Proof.** Since there exists a  $u \in U$  such that

u(a) = 1, u = 0 on  $[e_1, e_k]$ , u(b) = 1,

it is easily seen that dim  $\tilde{U} = n - 1$ . Assume now that there exists a  $\tilde{u} \in \tilde{U}$  with at least n - 1 sign changes in (a, b). Of course,  $\tilde{u}(a) = \tilde{u}(b) = 0$ . Then it follows from (4.5) that  $[a, b] \setminus Z(\tilde{u}) = \bigcup_{i=1}^{l} A_i$  (the union of the connected components) with l = n, which implies that  $\tilde{u}$  has exactly n - 1 sign changes. Consider first the case when n is even. Then  $\tilde{u}$  has different sign on  $A_1$  and on  $A_l$ , respectively. Let  $\tilde{v} \in V$  such that  $\tilde{v}(a)\tilde{v}(b) < 0$  (this function can be found analogously as the function v defined in the proof of (4.3)). Then for some sufficiently small  $\varepsilon$  the function  $\tilde{u} + \varepsilon \tilde{v} \in V$  has at least n + 1 sign changes in (a, b) which contradicts the property of V to be a WT-system on [a, b].

The case when *n* is odd can be treated analogously using a function  $\tilde{v} \in V$  such that  $\tilde{v}(a)\tilde{v}(b) > 0$ .

Thus it follows that  $\tilde{U}$  is a WT-system on [a, b].  $\Box$ 

**Claim 3.7.** Let  $u \in U \setminus \{0\}$  and let a set  $\{x_i\}_{i=1}^{m+1}$  of separated zeros of u be given satisfying

$$a \leqslant x_1 < x_2 < \dots < x_m \leqslant b \leqslant x_{m+1} = x_1 + b - a \tag{4.6}$$

and  $x_m - x_1 < b - a$  where  $1 \le m \le d(u)$ . Then there exists a  $\tilde{u} \in U(u) \setminus \{0\}$  such that

 $(-1)^{i}\tilde{u}(x) \ge 0, \quad x \in [x_{i}, x_{i+1}], \ i = 1, \dots, m.$ 

**Proof.** We prove the statement by considering several cases.

Case 3.6.1: Assume that U(u) = U. Let a set of separated zeros of u be given by (4.6). Suppose first that m = n. Since each  $v \in V$  has at most  $n_i - 1$  separated zeros in  $I_i$ , i = 1, ..., k + 1, and  $n + 1 = \dim V = \sum_{i=1}^{k+1} n_i - k$ , it follows that each  $v \in V$  has at most n separated zeros in [a, b]. Hence the assumption m = n implies that  $Z(u) \cap [x_1, x_{m+1}] = \{x_i\}_{i=1}^{m+1}$  and u has exactly  $n_i - 1$  of its zeros in each  $I_i$ , i = 1, ..., k + 1. Moreover,  $e_1 \notin Z(u)$ , because otherwise  $e_1$  is a common zero of  $u|_{I_1}$  and  $u|_{I_2}$  which implies that u would have at most  $(n_1 - 1) + (n_2 - 1) - 1$  zeros in  $I_1 \cup I_2$ . Then u could have at most  $\sum_{i=1}^{k+1} n_i - (k+1) - 1 = n - 1$  zeros in [a, b] contradicting m = n. Analogously we obtain that  $Z(u) \cap \{e_i\}_{i=1}^k = \emptyset$ . Then, since each  $U_i$  is a Haar system on  $I_i$ , all the zeros of u in (a, b) must be sign changes.

We distinguish: If  $x_m < b$ , then *u* changes the sign at  $\{x_i\}_{i=2}^m$  and setting  $\tilde{u} = \varepsilon u$  for some  $\varepsilon \in \{-1, 1\}$  the statement follows.

If  $x_m = b$ , then  $x_1 > a$ , because  $x_m - x_1 < b - a$ . Moreover, u(a) = 0, since  $u(x_m) = 0$  and  $u \in C_{b-a}$ . Then u would have m + 1 = n + 1 separated zeros  $\{a, x_1, \dots, x_m\}$  in [a, b] contradicting the above arguments on V.

Suppose now that  $m \leq n - 1$  and *n* is even. Set

$$y_0 = a, y_i = x_i, i = 1, ..., m, y_{m+1} = b$$
 if m is even

(then, in fact,  $m \leq n - 2$ , because *n* is even), and

 $y_0 = a$ ,  $y_i = x_{i+1}$ , i = 1, ..., m - 1,  $y_m = b$  if m is odd.

In both cases, using the statements on WT-systems given in Remark 4 we find a  $\tilde{u} \in \tilde{U} \setminus \{0\}$  (recall that we have shown in Claim 3.6 that  $\tilde{U}$  is a WT-system on [a, b]) such that

$$(-1)^{i}\tilde{u}(x) \ge 0, \ x \in [y_{i}, y_{i+1}], \ i = 0, ..., m$$
 if m is even,  
 $(-1)^{i+1}\tilde{u}(x) \ge 0, \ x \in [y_{i}, y_{i+1}], \ i = 0, ..., m-1$  if m is odd.

(If  $x_1 = a$  or  $x_m = b$ , the inequalities are also true for the degenerate intervals  $[y_0, y_1]$ ,  $[y_{m-1}, y_m]$  or  $[y_m, y_{m+1}]$ , respectively, because  $\bar{u}(a) = \bar{u}(b) = 0$  for every  $\bar{u} \in \tilde{U}$ .)

Thus in both cases it follows that

 $(-1)^m \tilde{u}(x) \ge 0, \quad x \in [a, x_1] \cup [x_m, b],$ 

which corresponds to the sign behavior of  $\tilde{u}$  on  $[x_m, x_{m+1}]$ . Hence  $\tilde{u}$  has the desired properties.

Suppose now that *n* is odd and  $m \le n - 1$ . Then by Claim 3.5, *U* itself is a WT-system on [a, b]. Replacing the subspace  $\tilde{U}$  by *U*, if necessary, and arguing analogously as above we obtain a function  $\tilde{u} \in U \setminus \{0\}$  with the desired properties.

Case 3.6.2: Assume that u has at least two zero intervals  $J_1 = [e_j, e_l]$  and  $J_2 = [e_p, e_q]$ in [a, b] such that  $e_l < e_p$ , and at most finitely many zeros in  $[e_l, e_p]$ . Let  $\{x_i\}_{i=1}^m \cap (e_l, e_p) = \{y_i\}_{i=1}^r$  such that  $y_0 = e_l < y_1 < \cdots < y_r < e_p = y_{r+1}$ . Define  $\hat{u} \in V$ satisfying  $\hat{u} = 0$  on  $[a, e_l] \cup [e_p, b]$  and  $\hat{u} = u$  on  $(e_l, e_p)$ . Since V satisfies Property A, the subspace  $V(\hat{u})$  satisfies Property A. To use this property we distinguish several cases:

Consider first the cases when  $x_1 \notin (e_l, e_p)$  and  $x_1 \in (e_l, e_p)$ , *m* even, respectively (hence  $x_1 = y_1$  in the second case). In both cases, by the Property A there exists a  $\tilde{u} \in V(\hat{u}) \setminus \{0\}$  such that

$$(-1)^{i}\tilde{u}(x) \ge 0, \quad x \in [y_{i}, y_{i+1}], \quad i = 0, \dots, r$$

Finally assume that  $x_1 \in (e_l, e_p)$  and *m* is odd. Define  $\tilde{y}_0 = e_l$  and  $\tilde{y}_i = y_{i+1}$ , i = 1, ..., r. By the Property A there exists a  $\tilde{u} \in V(\hat{u}) \setminus \{0\}$  such that

$$(-1)^{i+1}\tilde{u}(x) \ge 0, \quad x \in [\tilde{y}_i, \tilde{y}_{i+1}], \quad i = 0, \dots, r-1.$$

Moreover, in all cases  $\tilde{u}(a) = \tilde{u}(b) = 0$  which implies that  $\tilde{u}$  has a periodic extension in  $C_{b-a}$  (again denoted by  $\tilde{u}$ ). Therefore,  $\tilde{u} \in U(u)$  and  $\varepsilon \tilde{u}$  has the desired properties for some  $\varepsilon \in \{-1, 1\}$ .

Case 3.6.3: Assume that u has a unique zero interval  $J = [e_p, e_q]$  in [a, b]. To derive this case from Case 3.6.2 we generate a subspace  $\tilde{V}$  of piecing together Haar systems for a bigger knot sequence as follows:

Let

$$e_{k+1+i} = e_i + b - a, \quad I_{k+1+i} = [e_{k+i}, e_{k+1+i}]$$

and

$$U_{k+1+i} = \{ u \in C(I_{k+1+i}) : u(x) = \tilde{u}(x - (b - a)), x \in I_{k+1+i}, \text{ for some } \tilde{u} \in U_i \},\$$

 $i = 1, \dots, k + 1$ . We consider the linear space  $\tilde{V}$  defined by  $\tilde{V} = \{v \in C[e_0, e_{2k+2}] : v|_L \in U_i, i = 1, \dots, 2k+2\}.$ 

Of course,  $\tilde{V}$  has the same properties as V. In particular, it satisfies Property A. Moreover, the given subspace U of  $C_{b-a}$  can also be defined by

$$U = \{ u \in C_{b-a} : u |_{I_i} \in U_i, \ i = l, \dots, l+k \}$$

for any  $l \in \{1, ..., k+2\}$ . We now consider the given function u on  $[e_p, e_{q+k+1}]$ . Then by hypothesis, u = 0 on  $[e_p, e_q] \cup [e_{p+k+1}, e_{q+k+1}]$  and u has at most finitely many zeros in  $[e_q, e_{p+k+1}]$ . As in Case 3.6.2 we define  $\hat{u} \in \tilde{V}$  satisfying  $\hat{u} = 0$  on  $[e_0, e_q] \cup [e_{p+k+1}, e_{2k+2}]$  and  $\hat{u} = u$  on  $(e_q, e_{p+k+1})$ . Since  $\tilde{u}|_{I_i} \in U_i$ , i = p + 1, ..., p + k + 1, and  $\tilde{u}(e_p) = \tilde{u}(e_{p+k+1}) = 0$  for every  $\tilde{u} \in \tilde{V}(\hat{u})$ , every function  $\tilde{u}|_{[e_p, e_{p+k+1}]}$  has a periodic extension in U. Moreover, since  $\tilde{V}(\hat{u})$  satisfies Property A, similarly arguing as in Case 3.6.2 we find a  $\tilde{u} \in \tilde{V}(\hat{u})$  such that  $\tilde{u}$  has the desired sign behaviour on  $[e_p, e_{p+k+1}]$  (where the separated zeros  $\{x_i\}_{i=1}^{m+1}$  are identified with a subset of the sphere and, therefore, they correspond to a set of separated zeros in  $[e_p, e_{p+k+1}]$ ). Thus the extension of  $\tilde{u}$  in U (again denoted by  $\tilde{u}$ ) is a function with the desired properties on  $[e_p, e_{p+k+1}]$  and, therefore, on [a, b].

This completes the proof of Claim 3.7.  $\Box$ 

**Proof of Theorem 7.** From Claim 3.2 it follows that  $Z(U) = \emptyset$ . Moreover, in view of Claim 3.4, statement (2)(a) of Theorem 5 is satisfied. Finally, statement (2)(b) of Theorem 5 follows from Claim 3.7.

Hence by Theorem 5, U satisfies Property  $A_{per}$ .

**Example 4** (Periodic splines). Given  $k \ge 0$  and  $l \ge 1$ , let  $a = e_0 < e_1 < \cdots < e_{k+1} = b$ . Extend this knot vector to a knot sequence on  $\mathbb{R}$  by

$$e_{i+j(k+1)} = e_i + j(b-a), \quad i = 0, \dots, k+1, \ j \in \mathbb{Z} \setminus \{0\}.$$

Set  $\Delta = \{e_i\}_{i \in \mathbb{Z}}$  and  $I_i = [e_{i-1}, e_i]$ ,  $i \in \mathbb{Z}$ . By  $\Pi_l$  we denote the linear space of all polynomials of degree at most l. For any  $q \in \{1, ..., l\}$  we consider the linear space  $S_l^{l-q}(\Delta)$  defined by

$$S_l^{l-q}(\Delta) = \{ s \in C^{l-q}(\mathbb{R}) : s|_{I_i} \in \Pi_l, i \in \mathbb{Z} \},\$$

the subspace of *polynomial spline functions* of degree l with the fixed knots  $\{e_i\}_{i \in \mathbb{Z}}$  of multiplicity q. It is well-known (cf. [6, Theorem 4.5]) that  $\dim S_l^{l-q}(\Delta)|_{[a,b]} = l+1+qk$  and a natural basis on [a,b] is given by

$$1, x, \dots, x^{l}, (x - e_{1})^{l}_{+}, \dots, (x - e_{1})^{l-q+1}_{+}, \dots, (x - e_{k})^{l}_{+}, \dots, (x - e_{k})^{l-q+1}_{+},$$

where

$$(x-e_i)_+^r \coloneqq \begin{cases} (x-e_i)^r & \text{if } x \ge e_i, \\ 0 & \text{if } x < e_i. \end{cases}$$

Moreover, it is well-known that  $S_l^{l-q}(\Delta)$  is a WT-system on [a, b] [6, Theorem 4.55] and satisfies Property A there [4, p. 81].

For that what follows we need a local basis of  $S_l^{l-q}(\Delta)$ , the basis of B-splines. To define it we split up each knot  $e_i$  according to its multiplicity q by setting

$$e_i = y_{iq} = y_{iq+1} = \dots = y_{(i+1)q-1}, \quad i \in \mathbb{Z}$$

Then it is well-known [6, Theorem 4.9] that a basis of  $S_l^{l-q}(\Delta)$  is given by  $\{B_{\mu}\}_{\mu \in \mathbb{Z}}$ where  $B_{\mu}$  is the unique *B*-spline satisfying

$$B_{\mu} = 0 \quad \text{on } \mathbb{R} \setminus (y_{\mu}, y_{\mu+l+1}),$$
  

$$B_{\mu}(x) > 0 \quad \text{for } x \in (y_{\mu}, y_{\mu+l+1}),$$
  

$$\sum_{\mu \in \mathbb{Z}} B_{\mu}(x) = 1 \quad \text{for } x \in \mathbb{R}.$$

Moreover, it is well-known [6, Theorem 4.64] that every subsystem  $\{B_{\mu_1}, B_{\mu_1+1}, \dots, B_{\mu_2}\}$  where  $\mu_1, \mu_2 \in \mathbb{Z}, \mu_1 < \mu_2$ , spans a WT-space.

We are now interested in the subspace

$$P_l^{l-q}(\Delta) = S_l^{l-q}(\Delta) \cap C_{b-a},\tag{4.7}$$

the subspace of *periodic splines* of degree l with the fixed knots  $\{e_i\}_{i \in \mathbb{Z}}$  of multiplicity q. It is easily verified that

$$\dim P_l^{l-q}(\Delta) = l + 1 + qk - (l - q + 1) = q(k + 1)$$

**Theorem 8.** Let  $U = P_l^{l-q}(\Delta)$ , the space of periodic splines defined in (4.7). Then U satisfies Property A<sub>per</sub>.

To prove this statement we distinguish two cases.

Case 4.1: Let q = l. Then  $S_l^0(\Delta)|_{[a,b]}$  is obviously a space of piecing together the Haar systems  $U_i = \Pi_l, i = 1, ..., k + 1$ . This implies that  $S_l^0(\Delta)|_{[a,b]}$  corresponds to a space V as considered in Example 3. Hence by the arguments in the proof of Example 3, the space  $U = P_l^0(\Delta)$  satisfies Property A<sub>per</sub>.

Case 4.2: Assume that  $q \in \{1, ..., l-1\}$ . To show that  $U = P_l^{l-q}(\Delta)$  satisfies Property A<sub>per</sub> we divide the proof into several parts.

Claim 4.1. Let 
$$u \in U$$
. Then  

$$[S \setminus Z(u)] \leq \dim U(u).$$
(4.8)

**Proof.** Assume first that U(u) = U and  $S \setminus Z(u) = \bigcup_{i=1}^{r} A_i$ , the union of the connected components, where  $r \ge \dim U + 1 = q(k+1) + 1$ . It is easily seen that for each  $i \in \{1, ..., r\}$  there exists a  $z_i \in A_i$  such that  $u'(z_i) = 0$  (the derivative of u) and  $\{z_i\}_{i=1}^{r+1}$  is a set of separated zeros of u' (as a subset of  $\mathbb{R}$ ) satisfying, without loss of

generality,

$$a \leqslant z_1 < \dots < z_r \leqslant b \leqslant z_{r+1} = z_1 + b - a$$

and  $z_r - z_1 < b - a$ . Hence  $[S \setminus Z(u')] \ge r$ .

By a repeated application of this argument we finally obtain that

$$[S \setminus Z(u^{(l-q)})] \ge r.$$

Moreover,  $u^{(l-q)}$  is a continuous and periodic spline function of degree q which implies that

$$u^{(l-q)} \in P^0_a(\Delta).$$

Since dim  $P_q^0(\Delta) = q(k+1)$ , we then have got that

$$[S \setminus Z(u^{(l-q)})] \ge r \ge q(k+1) + 1 = \dim P_q^0(\Delta) + 1.$$

But this contradicts (4.5), because  $P_q^0(\Delta)$  is a space of piecing together the Haar systems  $U_i = \prod_q, i \in \mathbb{Z}$ , as considered in Example 3.

Assume now that u has a unique zero interval  $J = [e_{\mu}, e_{\nu}]$  in [a, b]. To determine the dimension of U(u) we consider the interval  $\tilde{J} = [e_{\mu}, e_{\nu+k+1}]$ . Then u has the unique zero intervals J and  $\hat{J} = [e_{\mu+k+1}, e_{\nu+k+1}]$  in  $\tilde{J}$ , and, since

$$e_{v} = y_{vq+i}, \quad e_{\mu+k+1} = y_{(\mu+k+1)q+i}, \quad i = 0, \dots, q-1,$$

it is easily verified that

$$U(u)|_{\tilde{J}} = \operatorname{span}\{B_{vq}, B_{vq+1}, \dots, B_{(\mu+k+2)q-l-2}\}|_{\tilde{J}}$$

Therefore,

$$\tilde{d} \coloneqq \dim U(u) = \dim U(u)|_{\tilde{J}} = (\mu + k + 2 - \nu)q - l - 1.$$

Suppose that  $[S \setminus Z(u)] \ge \tilde{d} + 1$ . Then, since  $u(e_v) = u(e_{\mu+k+1}) = 0$ , *u* has at least  $\tilde{d} + 2$  separated zeros

 $z_0 = e_v < z_1 < \cdots < z_{\tilde{d}} < e_{\mu+k+1} = z_{\tilde{d}+1}.$ 

Since  $u^{(j)}(e_v) = u^{(j)}(e_{\mu+k+1}) = 0, j = 0, ..., l-q$ , it then follows that  $u^{(j)}$  has at least  $\tilde{d} + j + 2$  separated zeros in  $\tilde{J}, j = 0, ..., l-q$ . But,  $u^{(l-q)} \in P_q^0(\Delta)$  which implies that  $u^{(l-q)}$  has at most q separated zeros in each  $I_i, i = v + 1, ..., \mu + k + 1$ , i.e.,  $u^{(l-q)}$  has at most

$$\sum_{i=\nu+1}^{\mu+k+1} q = (\mu+k+1-\nu)q < (\mu+k+1-\nu)q + 1 = \tilde{d} + l - q + 2,$$

a contradiction. (This part can also be proved by applying [6, Theorem 4.53].)

Finally, assume that *u* has exactly *r* zero intervals  $J_i = [e_{\mu_i}, e_{\nu_i}]$  satisfying  $e_{\nu_i} < e_{\mu_{i+1}}$ , i = 1, ..., r - 1 with  $r \ge 2$  in [a, b]. Set  $J_{r+1} = [e_{\mu_{r+1}}, e_{\nu_{r+1}}]$  where  $e_{\mu_{r+1}} = e_{\mu_1+k+1}, e_{\nu_{r+1}} = e_{\nu_1+k+1}$ , and  $\tilde{J}_i = [e_{\mu_i}, e_{\nu_{i+1}}]$ , i = 1, ..., r. Then analogously as above it is easy to see

that

$$U(u)|_{\tilde{J}_i} = \operatorname{span}\{B_{v_iq}, B_{v_iq+1}, \dots, B_{(\mu_{i+1}+1)q-l-2}\}|_{\tilde{J}_i},$$

i = 1, ..., r, and

$$\dim U(u) = \sum_{i=1}^{r} \dim U(u)|_{\tilde{J}_{i}}.$$
(4.9)

Since every  $\tilde{J}_i$  corresponds to the interval  $\tilde{J}$  in the above considered case of a unique zero interval, we can apply the above arguments and obtain that

$$[\tilde{J}_i \setminus Z(u)] \leq \dim U(u)|_{\tilde{J}_i},$$

i = 1, ..., r. Then the statement follows from (4.9).

This completes the proof of Claim 4.1.  $\Box$ 

**Claim 4.2.**  $U = P_1^{l-q}(\Delta)$  is a WT-system on [a, b], if its dimension is odd.

**Proof.** Assume that there exists a  $\hat{u} \in U$  such that  $\hat{u}$  has at least q(k+1) sign changes in (a, b). Then, similarly arguing as in the proof of Claim 4.1, we obtain that  $\hat{u}^{(l-q)}$  has at least q(k+1) sign changes in S. In fact,  $\hat{u}^{(l-q)}$  must have at least q(k+1) + 1 sign changes in S, because q(k+1) is odd. Thus it follows that

$$[S \setminus Z(\hat{u}^{(l-q)})] \ge q(k+1) + 1.$$

But this contradicts (4.5), since  $\hat{u}^{(l-q)} \in P_q^0(\Delta)$  and  $P_q^0(\Delta)$  is a space of piecing together the Haar systems  $U_i = \prod_q, i \in \mathbb{Z}$ , satisfying dim  $P_q^0(\Delta) = q(k+1)$ .  $\Box$ 

**Claim 4.3.** Let q(k+1) be even and define

$$\tilde{U} = \{ \tilde{u} \in U : \tilde{u} \in C^{l-q+1}(e_k - \varepsilon, e_k + \varepsilon) \text{ for } \varepsilon > 0 \text{ sufficiently small} \}.$$

Then dim  $\tilde{U} = q(k+1) - 1$  and  $\tilde{U}$  is a WT-system on [a, b].

**Proof.** Recall first that  $u \in C^{l-q}(\mathbb{R})$  for every  $u \in U$ . Since in addition every  $\tilde{u} \in \tilde{U}$  is at least l - q + 1 times continuously differentiable in a neighborhood of the knot  $e_k$ , the periodic spline space  $\tilde{U}$  is defined by the given knot sequence  $\Delta$  with the difference that  $e_k$  (and all of its periodic analogues  $\{e_{k+i(k+1)}\}_{i \in \mathbb{Z}}$ ) are chosen to be of multiplicity q - 1 (the multiplicity q of the other knots in  $\Delta$  remains unchanged). Thus it follows that

$$\tilde{d} \coloneqq \dim \tilde{U} = \dim U - 1 = q(k+1) - 1.$$

Suppose now that there exists a  $\tilde{u} \in \tilde{U}$  such that  $\tilde{u}$  has at least  $\tilde{d}$  sign changes in (a, b). Since by assumption  $\tilde{d}$  is odd, as in the proof of Claim 4.2 we can show that  $\tilde{u}^{(l-q)}$  has at least  $\tilde{d} + 1$  sign changes in S.

Let 
$$D = \bigcup_{i \in \mathbb{Z}} (e_i, e_{i+1}) \cup \{e_{k+j(k+1)}\}_{j \in \mathbb{Z}}$$
 and set  
$$\hat{u}(x) = \begin{cases} \frac{d}{dx} \tilde{u}^{(l-q)}(x) & \text{if } x \in D, \\ 0 & \text{if } x \in \mathbb{R} \setminus D. \end{cases}$$

Since  $\hat{u}$  is a piecewise polynomial of degree q - 1 on D, it has at most q - 1 zeros with a sign change in each  $(e_i, e_{i+1})$ , i = 0, ..., k - 2, and at most 2q - 2 zeros with a sign change in  $(e_{k-1}, e_{k+1})$  (note that  $\hat{u}$  is continuous at  $e_k$ ). Moreover,  $\hat{u}$  can change the sign in  $(e_i - \delta, e_i + \delta)$ , i = 0, ..., k - 1, for some  $\delta > 0$  sufficiently small. Thus it follows that  $\hat{u}$  has at most

$$(k-1)(q-1) + 2q - 2 + k = q(k+1) - 1 = \tilde{d}$$

sign changes in S. On the other hand,  $\tilde{u}^{(l-q)}$  has at least  $\tilde{d} + 1$  sign changes in S which implies that  $\hat{u}$  must have at least  $\tilde{d} + 1$  sign changes in S, a contradiction.

Thus we have shown that  $\tilde{U}$  is a WT-system on [a, b].  $\Box$ 

**Claim 4.4.** Let  $u \in U \setminus \{0\}$  and let a set  $\{x_i\}_{i=1}^{m+1}$  of separated zeros of u be given satisfying

$$a \leqslant x_1 < x_2 < \dots < x_m \leqslant b \leqslant x_{m+1} = x_1 + b - a \tag{4.10}$$

and  $x_m - x_1 < b - a$  where  $1 \le m \le \dim U(u)$ . Then there exists a  $\tilde{u} \in U(u) \setminus \{0\}$  such that

$$(-1)^{l}\tilde{u}(x) \ge 0, \quad x \in [x_{i}, x_{i+1}], \quad i = 1, \dots, m.$$
 (4.11)

**Proof.** We consider several cases.

*Case* 4.4.1. Assume that U(u) = U. Let  $d := \dim U = q(k+1)$  and let a set of separated zeros of u be given by (4.10). Suppose first that m = d. Since U(u) = U, u has at most finitely many zeros in [a, b]. We show that u changes the sign at  $x_i$ , i = 2, ..., m. Otherwise,  $u'(x_{i_0}) = 0$  for some  $i_0 \in \{2, ..., m\}$ . Moreover, it is easy to see that for every  $i \in \{2, ..., m+1\}$  there exists a  $z_i \in (x_{i-1}, x_i)$  such that  $u'(z_i) = 0$  and  $\{x_{i_0}, z_2, ..., z_{m+1}, z_2 + b - a\}$  are separated zeros of u'. This implies that

$$[S \setminus Z(u')] \ge m+1 = d+1.$$

By a repeated application we finally obtain that

$$[S \setminus Z(u^{(l-q)})] \ge d+1.$$

But this contradicts (4.5), because  $u^{(l-q)} \in P_q^0(\Delta)$  and dim  $P_q^0(\Delta) = q(k+1)$ .

In the same way we can show that  $Z(u) \cap [x_1, x_{m+1}] = \{x_i\}_{i=1}^{m+1}$ .

Thus we have shown that u has exactly m + 1 zeros in  $[x_1, x_{m+1}]$  and changes the sign at  $x_i$ , i = 2, ..., m. Hence setting  $\tilde{u} = \varepsilon u$  for some  $\varepsilon \in \{-1, 1\}$  we obtain

$$(-1)^{t}\tilde{u}(x) \ge 0, \quad x \in [x_{i}, x_{i+1}], \ i = 1, \dots, m.$$

Assume now that  $m \le d - 1$  and *d* is even. Then arguing in the same way as in Case 3.6.1 and applying Claim 4.3 we obtain a  $\tilde{u} \in U \setminus \{0\}$  such that (4.11) holds. If *d* is odd,

then by Claim 4.2 U itself is a WT-system on [a, b] and arguing analogously as in the case when d is even a  $\tilde{u} \in U \setminus \{0\}$  with the desired properties can be found.

Case 4.4.2: Assume that u has at least two zero intervals  $J_1 = [e_{\mu_1}, e_{\nu_1}]$  and  $J_2 = [e_{\mu_2}, e_{\nu_2}]$  in [a, b] such that  $e_{\nu_1} < e_{\mu_2}$  and u has at most finitely many zeros in  $[e_{\nu_1}, e_{\mu_2}]$ . Let  $\{x_i\}_{i=1}^m \cap (e_{\nu_1}, e_{\mu_2}) = \{y_i\}_{i=1}^r$  such that  $y_0 = e_{\nu_1} < y_1 < \cdots < y_r < e_{\mu_2} = y_{r+1}$ . Define  $\hat{u} \in V = S_l^{l-q}(\Delta)$  satisfying  $\hat{u} = 0$  on  $[a, e_{\nu_1}] \cup [e_{\mu_2}, b]$  and  $\hat{u} = u$  on  $(e_{\nu_1}, e_{\mu_2})$ . Since V satisfies Property A on [a, b], the subspace  $V(\hat{u})$  satisfies Property A on [a, b]. Then, considering several cases as in Case 3.6.2 we find a  $\tilde{u} \in V(\hat{u}) \setminus \{0\}$  such that (4.11) holds.

Moreover,  $\tilde{u}^{(j)}(a) = \tilde{u}^{(j)}(b) = 0, j = 0, \dots, l - q$ . Therefore,  $\tilde{u} \in U(u)$ .

*Case* 4.4.3: *Assume that u has a unique zero interval*  $J = [e_{\mu}, e_{\nu}]$  *in* [a, b]. Then by definition of U, u has an additional zero interval  $\tilde{J} = [e_{\mu+k+1}, e_{\nu+k+1}]$  in the interval  $[e_{\mu}, e_{\nu+k+1}]$ . Since  $S_l^{l-q}(\Delta)$  also satisfies Property A on [a, a + 2(b - a)], analogously arguing as in Case 4.4.2 we obtain the desired function  $\tilde{u}$ .

This completes the proof of Claim 4.4.  $\Box$ 

**Proof of Theorem 8.** Let  $U = P_l^{l-q}(\Delta)$ . If q = l, the statement follows from Case 4.1. Otherwise, let  $q \in \{1, ..., l-1\}$ . Since the constant functions are contained in U, it follows that  $Z(U) = \emptyset$ . Moreover, in view of Claim 4.1, statement (2)(a) of Theorem 5 is satisfied. Finally, statement (2)(b) of Theorem 5 follows from Claim 4.4.

Hence by Theorem 5,  $P_l^{l-q}(\Delta)$  satisfies Property A<sub>per</sub>.  $\Box$ 

**Remark.** For the special case when q = 1 and the weight function w = 1 it was shown in [3] that every  $f \in C_{b-a}$  has a unique  $L^1$ -approximation from  $U = P_l^{l-1}(\Delta)$ .

#### References

- V.F. Babenko, M.E. Gorbenko, On the uniqueness of an element of the best L<sub>1</sub>-approximation for functions with values in a Banach space, Ukrainian Math. J. 52 (2000) 29–34.
- [2] W. Li, Weak Chebyshev subspaces and A-subspaces of C[a, b], Trans. Amer. Math. Soc. 322 (1990) 583–591.
- [3] G. Meinardus, G. Nürnberger, Uniqueness of best  $L_1$ -approximations from periodic spline spaces, J. Approx. Theory 58 (1989) 114–120.
- [4] A. Pinkus, On L<sup>1</sup>-Approximation, Cambridge University Press, Cambridge, 1989.
- [5] A. Pinkus, B. Wajnryb, Necessary conditions for uniqueness in L<sup>1</sup>-approximation, J. Approx. Theory 53 (1988) 54–66.
- [6] L.L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.
- [7] H. Strauss, Best *L*<sub>1</sub>-approximation, J. Approx. Theory 41 (1984) 297–308.